
1

Adaptive Diffusions for Scalable
Learning over Graphs

Dimitris Berberidis1, Athanasios N. Nikolakopoulos2 and Georgios B. Giannakis1,2

Dept. of ECE1 and Digital Tech. Center2, University of Minnesota, Minneapolis, MN 55455, USA

Abstract—Diffusion-based classifiers such as those relying on
the Personalized PageRank and the Heat kernel, enjoy remark-
able classification accuracy at modest computational require-
ments. Their performance however is affected by the extent to
which the chosen diffusion captures a typically unknown label
propagation mechanism, that can be specific to the underlying
graph, and potentially different for each class. The present work
introduces a disciplined, data-efficient approach to learning class-
specific diffusion functions adapted to the underlying network
topology. The novel learning approach leverages the notion of
“landing probabilities” of class-specific random walks, which can
be computed efficiently, thereby ensuring scalability to large
graphs. This is supported by rigorous analysis of the properties
of the model as well as the proposed algorithms. Furthermore, a
robust version of the classifier facilitates learning even in noisy
environments. Classification tests on real networks demonstrate
that adapting the diffusion function to the given graph and
observed labels, significantly improves the performance over
fixed diffusions; reaching – and many times surpassing – the
classification accuracy of computationally heavier state-of-the-
art competing methods, that rely on node embeddings and deep
neural networks.

Index Terms—Semi-supervised Classification, Random Walks,
Diffusions.

I. INTRODUCTION

THE task of classifying nodes of a graph arises frequently
in several applications on real-world networks, such

as the ones derived from social interactions and biological
dependencies. Graph-based semi-supervised learning (SSL)
methods tackle this task building on the premise that the true
labels are distributed “smoothly” with respect to the underlying
network, which then motivates leveraging the network structure
to increase the classification accuracy [11]. Graph-based SSL
has been pursued by various intertwined methods, including
iterative label propagation [6], [43], [29], [25], kernels on
graphs [31], manifold regularization [5], graph partitioning [40],
[19], transductive learning [39], competitive infection models
[36], and bootstrapped label propagation [10]. SSL based on
graph filters was discussed in [37], and further developed in
[12] for bridge monitoring. Recently, approaches based on
node-embeddings [34], [18], [42], as well as deep-learning
architectures [21], [2] have gained popularity, and were reported
to have state-of-the-art performance.

Many of the aforementioned methods are challenged by
computational complexity and scalability issues that limit
their applicability to large-scale networks. Random-walk-based
diffusions present an efficient and effective alternative. Methods

Work was supported by NSF 171141, 1514056 and 1500713

of this family diffuse probabilistically the known labels through
the graph, thereby ranking nodes according to weighted sums of
variable-length landing probabilities. Celebrated representatives
include those based on the Personalized PageRank (PPR) and
the Heat Kernel that were found to perform remarkably well in
certain application domains [22], and have been nicely linked
to particular network models [23], [3], [24]. Spectral diffusions
have been used for community detection [47], [45], where local
diffusion patterns are produced to approximate low-conductance
communities, and adaptive PPR has been applied for prediction
on a heterogeneous protein-function network [46].

The effectiveness of diffusion-based classifiers can vary
considerably depending on whether the chosen diffusion
conforms with the latent label propagation mechanism that
might be, (i) particular to the target application or underlying
network topology; and, (ii) different for each class. The present
contribution1 alleviates these shortcomings and markedly
improves the performance of random-walk-based classifiers
by adapting the diffusion functions of every class to both the
network and the observed labels. The resultant novel classifier
relies on the notion of landing probabilities of short-length
random walks rooted at the observed nodes of each class. The
small number of these landing probabilities can be extracted
efficiently with a small number of sparse matrix-vector products,
thus ensuring applicability to large-scale networks. Theoretical
analysis establishes that short random walks are in most cases
sufficient for reliable classification. Furthermore, an algorithm
is developed to identify (and potentially remove) outlying or
anomalous samples jointly with adapting the diffusions. We test
our methods in terms of multiclass and multilabel classification
accuracy, and confirm that it can achieve results competitive to
state-of-the-art methods, while also being considerably faster.

The rest of the paper is organized as follows. Section II
introduces random-walk based diffusions. Our novel approach
along with relevant analytical results are the subjects of
Section III. Section IV presents a robust version of our
algorithm, and Section V places our work in the context of
related methods. Finally, Section VI presents experiments, while
Section VII concludes the paper and discusses future directions.
Notation. Bold lower-case letters denote column vectors (e.g.,
v); bold upper-case letters denote matrices (e.g., Q). Vectors qj
and qT

i denote the jth column and the ith row of Q, respectively;
whereas Qij (or sometimes for clarity [Q]ij) denotes the ijth

entry of Q. Vector eK denotes the K th canonical column vector;
and ‖·‖ denotes the Euclidean norm, unless stated otherwise.

1A preliminary version of the work has appeared in [8].

2

II. PROBLEM STATEMENT AND MODELING

Consider a graph G := {V, E}, where V is the set of N
nodes, and E the set of edges. Connectivity is captured by
the weight matrix W having entries Wij > 0 if (i, j) ∈ E .
Associated with each node i ∈ V there is a discrete label
yi ∈ Y . In SSL classification over graphs, a subset L ⊂ V
of nodes has available labels yL, and the goal is to infer the
labels of the unlabeled set U := V \ L. Given a measure
of influence, a node most influenced by labeled nodes of a
certain class is deemed to also belong to the same class. Thus,
label-propagation on graphs boils down to quantifying the
influence of L on U , see, e.g. [11], [25], [41]. An intuitive yet
simple measure of node-to-node influence relies on the notion
of random walks on graphs.

A simple random walk on a graph is a discrete-time Markov
chain defined over the nodes, meaning with state space V . The
transition probabilities are

Pr{Xk = i|Xk−1 = j} = Wij/dj = [WD−1]ij := [H]ij

where Xk ∈ V denotes the position of the random walker (state)
at the kth step; dj :=

∑
k∈Nj

Wkj is the degree of node j;
and, Nj its neighborhood. Since we consider undirected graphs
the limiting distribution of {Xk} always exists and it is unique
if it is connected and non-bipartite. It is given by the dominant
right eigenvector of the column-stochastic transition probability
matrix H := WD−1, where D := diag (d1, d2, . . . , dN) [27].
The steady-state distribution π can be shown to have entries

πi := lim
k→∞

∑
j∈V

Pr{Xk = i|X0 = j}Pr{X0 = j} =
di

2|E|

that are clearly not dependent on the initial “seeding” distribu-
tion Pr{X0}; and π is thus unsuitable for measuring influence
among nodes. Instead, for graph-based SSL, we will utilize
the k−step landing probability per node i given by

p
(k)
i :=

∑
j∈V

Pr{Xk = i|X0 = j}Pr{X0 = j} (1)

that in vector form p(k) := [p
(k)
1 . . . p

(k)
N]T satisfies p(k) =

Hkp(0), where p
(0)
i := Pr{X0 = i}. In words, p(k)

i is the
probability that a random walker with initial distribution p(0)

is located at node i after k steps. Therefore, p(k)
i is a valid

measure of the influence that p(0) has on any node in V .
The landing probabilities per class c ∈ Y are (cf. (1))

p(k)
c = Hkvc (2)

where for Lc := {i ∈ L : yi = c}, we select as vc the
normalized class-indicator vector with i−th entry

[vc]i =

{
1/|Lc|, i ∈ Lc

0, else
(3)

acts as initial distribution. Using (2), we model diffusions per
class c over the graph driven by {p(k)

c }Kk=0 as

fc(θ) =

K∑
k=0

θkp
(k)
c (4)

where θk denotes the importance assigned to the kth hop
neighborhood. By setting θ0 = 0 (since it is not useful for

classification purposes) and constraining θ ∈ SK , where
SK := {x ∈ RK : x ≥ 0, 1Tx = 1} is the K−dimensional
probability simplex, fc(θ) can be compactly expressed as

fc(θ) =

K∑
k=1

θkp
(k)
c = P(K)

c θ (5)

where P
(K)
c :=

[
p

(1)
c · · · p

(K)
c

]
. Note that fc(θ) denotes a

valid nodal probability mass function (pmf) for class c.
Given θ and upon obtaining {fc(θ)}c∈Y , our diffusion-based

classifiers will predict labels over U as

ŷi(θ) := arg max
c∈Y

[fc(θ)]i (6)

where [fc(θ)]i is the ith entry of fc(θ).
The upshot of (4) is a unifying form of superimposed

diffusions allowing tunable simplex weights, taking up to K
steps per class to come up with an influence metric for the
semi-supervised classifier (6) over graphs. Next, we outline two
notable members of the family of diffusion-based classifiers
that can be viewed as special cases of (4).

A. Personalized PageRank Classifier

Inspired by its celebrated network centrality metric [9], the
Personalized PageRank (PPR) algorithm has well-documented
merits for label propagation; see, e.g. [28]. PPR is a special case
of (4) corresponding to θPPR = (1−α)

[
α0 α1 · · · αK

]T
,

where 0 < α < 1, and 1−α can be interpreted as the “restart”
probability of random walks with restarts.

The PPR-based classifier relies on (cf. (5))

fc(θPPR) = (1− α)

K∑
k=0

αkp(k)
c (7)

satisfying asymptotically in the number of random walk steps

lim
K→∞

fc(θPPR) = (1− α)(I− αH)−1vc

which implies that fc(θPPR) approximates the solution of
a linear system. Indeed, as shown in [3], PPR amounts to
solving a weighted regularized least-squares problem over
V; see also [23] for a PPR interpretation as an approximate
geometric discriminant function defined in the space of landing
probabilities.

B. Heat Kernel Classifier

The heat kernel (HK) is another popular diffusion that
has recently been employed for SSL [31] and community
detection on graphs [22]. HK is also a special case of

(4) with θHK = e−t
[
1 t t2

2 · · · tK

K!

]T
, yielding class

distributions (cf. (4))

fc(θHK) = e−t
K∑
k=0

tk

k!
p(k)
c . (8)

Furthermore, it can be readily shown that

lim
K→∞

fc(θHK) = e−t(I−H)vc

3

allowing HK to be interpreted as an approximation of a heat
diffusion process, where heat is flowing from Lc to the rest
of the graph; and fc(θHK) is a snapshot of the temperature
after time t has elapsed. HK provably yields low conductance
communities, while also converging faster to its asymptotic
closed-form expression than PPR (depending on the value of
t) [15].

III. ADAPTIVE DIFFUSIONS

Besides the unifying view of (4), the main contribution
here is on efficiently designing fc(θc) in (5), by learning
the corresponding θc per class. Thus, unlike PPR and HK,
the methods introduced here can afford class-specific label
propagation that is adaptive to the graph structure, and also
adaptive to the labeled nodes. Figure 1 gives a high-level
illustration of the proposed adaptive diffusion framework, where
two classes (red and green) are to be diffused over the graph
(cf. (2)), with class-specific diffusion coefficients adapted as
will be described next. Diffusions are then built (cf. (5)), and
employed for class prediction (cf. (6)).

Consider for generality a goodness-of-fit loss `(·), and a
regularizer R(·) promoting e.g., smoothness over the graph.
Using these, the sought class distribution will be

f̂c = arg min
f∈RN

`(yLc
, f) + λR(f) (9)

where λ tunes the degree of regularization, and

[yLc]i =

{
1, i ∈ Lc
0, else

is the indicator vector of the nodes belonging to class c. Using
our diffusion model in (5), the N−dimensional optimization
problem (9) reduces to solving for the K−dimensional vector
(K � N)

θ̂c = arg min
θ∈SK

`(yLc
, fc(θ)) + λR(fc(θ)). (10)

Although many choices of `(·) may be of interest, we will
focus for simplicity on the quadratic loss, namely

`(yLc
, f) :=

∑
i∈L

1

di
([ȳLc

]i − fi)2

= (ȳLc − f)TD†L(ȳLc − f) (11)

where ȳLc
:= (1/|L|)yLc

is the class indicator vector after
normalization to bring target variables (entries of ȳLc

) and
entries of f to the same scale, and D†L = diag(d

(−1)
L) with

entries

[d
(−1)
L]i =

{
1/di, i ∈ L

0, else
.

For a smoothness-promoting regularization, we will employ
the following (normalized) Laplacian-based metric

R(f) =
1

2

∑
i∈V

∑
j∈Ni

(
fi
di
− fj
dj

)2

= fTD−1LD−1f . (12)

where L := D −W is the Laplacian matrix of the graph.
Intuitively speaking, (11) favors vectors f having non-zero

Adapting
Diffusions

Label
Prediction

P
(K)
r

P
(K)
g

θr

θg

Fig. 1. High-level illustration of adaptive diffusions. The nodes belong to two
classes (red and green). The per-class diffusions are learned by exploiting the
landing probability spaces produced by random walks rooted at the sample
nodes (second layer: up for red; down for green).

(|1/|L|) values on nodes that are known to belong to class c,
and zero values on nodes that are known to belong to other
classes (L \ Lc), while (12) promotes similarity of the entries
of f that correspond to neighboring nodes. In (11) and (12),
each entry fi is normalized by d

− 1
2

i and d−1
i respectively.

This normalization counterbalances the tendency of random
walks to concentrate on high-degree nodes, thus placing equal
importance to all nodes.

Substituting (11) and (12) into (10), and recalling from (5)
that fc(θ) = P

(K)
c θ, yields the convex quadratic program

θ̂c = arg min
θ∈SK

θTAcθ + θTbc (13)

with bc and Ac given by

bc = − 2

|L|
(P(K)

c)TD†LyLc (14)

Ac = (P(K)
c)TD†LP

(K)
c + λ(P(K)

c)TD−1LD−1P(K)
c (15)

= (P(K)
c)T

[(
D†L + λD−1

)
P(K)
c − λD−1HP(K)

c

]
= (P(K)

c)T
(
D†LP

(K)
c + λD−1P̃(K)

c

)
(16)

where

HP(K)
c =

[
Hp

(1)
c Hp

(2)
c · · · Hp

(K)
c

]
=
[
p

(2)
c p

(3)
c · · · p

(K+1)
c

]
is a “shifted” version of P

(K)
c , where each p

(k)
c is advanced

by one step, and

P̃(K)
c :=

[
p̃

(1)
c p̃

(2)
c · · · p̃

(K)
c

]
with p̃

(i)
c := p

(i)
c −p

(i+1)
c containing the “differential” landing

probabilities. The complexity of ‘naively’ finding the K ×K
matrix Ac (and thus also bc) is O(K2N) for computing the
first summand, and O(|E|K) for the second summand in (15),
after leveraging the sparsity of L, which means |E| � N2.
But since columns of P̃

(K)
c are obtained as differences of

consecutive columns of P(K)
c , this load of O(|E|K) is saved.

4

In a nutshell, the solver in (13)-(16) that we term adaptive-
diffusion (AdaDIF), incurs complexity of order O(K2N).
Remark 1. The problem in (13) is a quadratic program (QP)
of dimension K (or the dictionary size D to be discussed in
Section III-C when in dictionary mode). In general, solving a
QP with K variables to a given precision requires a O(K3)
worst-case complexity. Although this may appear heavy, K in
our setting is 10 – 30 and thus negligibly small compared to the
quantities that depend on the graph dimensions. For instance,
the graphs that we tested have O(104) nodes (N) and O(105)
edges (|E|). Therefore, since K � N and K � |E| by many
orders of magnitude, the complexity for QP is dominated by
the O(|E|K) (same as PPR and HK) performing the random
walks and O(NK2) for computing Ac.

A. Limiting behavior and computational complexity

In this section, we offer further insights on the model (5),
along with complexity analysis of the parametric solution in
(13). To start, the next proposition establishes the limiting
behavior of AdaDIF as the regularization parameter grows.

Proposition 1. If the second largest eigenvalue of H has
multiplicity 1, then for K sufficiently large but finite, the
solution to (13) as λ→∞ satisfies

θ̂c = eK , ∀ Lc ⊆ V. (17)

Our experience with solving (13) reveal that the sufficiently
large K required for (17) to hold, can be as small as 102.

As λ→∞, the effect of the loss in (10) vanishes. According
to Proposition 1, this causes AdaDIF to boost smoothness by
concentrating the simplex weights (entries of θ̂c) on landing
probabilities of the late steps (k close to K). If on the other
extreme, smoothness-over-the-graph is not promoted (cf. λ =
0), the sole objective of AdaDIF is to construct diffusions that
best fit the available labeled data. Since short-length random
walks from a given node typically lead to nodes of the same
class, while longer walks to other classes, AdaDIF with λ = 0
tends to leverage only a few landing probabilities of early steps
(k close to 1). For moderate values of λ, AdaDIF effectively
adapts per-class diffusions by balancing the emphasis on initial
versus final landing probabilities.

Fig. 2 depicts an example of how AdaDIF places weights
{θk}Kk=1 on landing probabilities after a maximum of K = 20
steps, generated from few samples belonging to one of 7 classes
of the Cora citation network. Note that the learnt coefficients
may follow radically different patterns than those dictated by
standard non-adaptive diffusions such as PPR or HK. It is
worth noting that the simplex constraint induces sparsity of
the solution in (13), thus ‘pushing’ {θk} entries to zero.

The computational core of the proposed method is to build
the landing probability matrix P

(K)
c , whose columns are

computed fast using power iterations leveraging the sparsity of
H (cf. (2)). This endows AdaDIF with high computational
efficiency, especially for small K. Specifically, since for
solving (13) adaDIF incurs complexity O(K2N) per class,
if K < |E|/N , this becomes O(|E|K); and for |Y| classes, the

0 5 10 15 20
0

0.2

0.4

k

θ k

PPR
HK
AdaDIF

Fig. 2. Illustration of K = 20 landing probability coefficients for PPR with
α = 0.9, HK with t = 10, and AdaDIF (λ = 15).

overall complexity of AdaDIF is O(|Y||E|K), which is in the
same order as that of non-adaptive diffusions such as PPR and
HK. For larger K however, an additional O(K2N) is required
per class, mainly to obtain Ac in (16).

Overall, if O(KN) memory requirements are met, the
runtime of AdaDIF scales linearly with |E|, provided that
K remains small. Thankfully, small values of K are usually
sufficient to achieve high learning performance. As will be
shown in the next section, this observation is in par with
the analytical properties of diffusion based classifiers, where it
turns out that K large does not improve classification accuracy.

B. On the choice of K

Here we elaborate on how the selection of K influences
the classification task at hand. As expected, the effect of K
is intimately linked to the topology of the underlying graph,
the labeled nodes, and their properties. For simplicity, we will
focus on binary classification with the two classes denoted
by “ + ” and “ − .” Central to our subsequent analysis is a
concrete measure of the effect an extra landing probability
vector p

(k)
c can have on the outcome of a diffusion-based

classifier. Intuitively, this effect is diminishing as the number
of steps K grows, as both random walks eventually converge to
the same stationary distribution. Motivated by this, we introduce
next the γ-distinguishability threshold.

Definition 1 (γ-distinguishability threshold). Let p+ and p−
denote respectively the seed vectors for nodes of class “+” and
“−, ” initializing the landing probability vectors in matrices
Xc := P

(K)
c , and X̌c :=

[
p

(1)
c · · ·p(K−1)

c p
(K+1)
c

]
, where c ∈

{+,−}. With y := X+θ −X−θ and y̌ := X̌+θ − X̌−θ, the
γ-distinguishability threshold of the diffusion-based classifier
is the smallest integer Kγ satisfying

‖y − y̌‖ ≤ γ .

The following theorem establishes an upper bound on Kγ

expressed in terms of fundamental quantities of the graph, as
well as basic properties of the labeled nodes per class; see the
Appendix B for a proof.

5

Theorem 1. For any diffusion-based classifier with coefficients
θ constrained to a probability simplex of appropriate dimen-
sions, the γ-distinguishability threshold is upper-bounded as

Kγ ≤
1

µ′
log
[

2
√
dmax

γ

(√
1

dmin− |L−|
+
√

1
dmin+

|L+|

)]
where

dmin + := min
i∈L+

di, dmin− := min
j∈L−

dj , dmax := max
i∈V

di

and

µ′ := min{µ2, 2− µN}

where {µn}Nn=1 denote the eigenvalues of the normalized graph
Laplacian in ascending order.

The γ-distinguishability threshold can guide the choice of
the dimension K of the landing probability space. Indeed,
using class-specific landing probability steps K ≥ Kγ , does
not help distinguishing between the corresponding classes, in
the sense that the classifier output is not perturbed by more
than γ. Intuitively, the information contained in the landing
probabilities Kγ + 1,Kγ + 2, . . . is essentially the same for
both classes and thus, using them as features unnecessarily
increases the overall complexity of the classifier, and also
“opens the door” to curse of dimensionality related concerns.
Note also that in settings where one can freely choose the
nodes to sample, this result could be used to guide such choice
in a disciplined way.

Theorem 1 makes no assumptions on the diffusion coeffi-
cients, so long they belong to a probability simplex. Of course,
specifying the diffusion function can specialize and further
tighten the corresponding γ-distinguishability threshold. In
Appendix C we give a tighter threshold for PPR.

Conveniently, our experiments suggest that K ∈ [10, 20]
is usually sufficient to achieve high performance for most
real graphs ; see also Fig. 3 where Kγ is found numerically
for different values of γ-distinguishability threshold, and
proportions of sampled nodes on the BlogCatalog graph.
Nevertheless, longer random walks may be necessary in e.g.,
graphs with small µ′, especially when the number of labeled
nodes is scarce. To deal with such challenges, the ensuing
modification of AdaDIF that scales linearly with K is nicely
motivated.
Remark 2. While PPR and HK in theory rely on infinitely long
random walks, the coefficients decay rapidly (θk = αk for PPR
and θk = tk/k! for HK). This means that not only θk → 0 as
k →∞ in both cases, but the convergence rate is also very fast
(especially for HK). This agrees with our intuition on random
walks, as well as our result in Theorem 1 suggesting that, to
guarantee a level of distinguishability (which is necessary for
accuracy) between classes, classifiers should rely on relatively
short-length random walks. Moreover, when operating in an
adaptive framework such as the one proposed here, using finite-
step (preferably short-length) landing probabilities is much
more practical, since it restricts the number of free variables
(θk’s) which mitigates overfitting and results in optimization
problems that scale well with the network size.

10% 20% 30% 40% 50% 10−510−610−710−8

30

40

50

60

Sampled Nodes
γ

K

BlogCatalog

Fig. 3. Experimental evaluation Kγ for different values of γ-distinguishability
threshold, and proportions of sampled nodes on BlogCatalog graph.

C. Dictionary of diffusions

The present section deals with a modified version of AdaDIF,
where the number of parameters (dimension of θ) is restricted
to D < K, meaning the “degrees of freedom” of each class-
specific distribution are fewer than the number of landing
probabilities. Specifically, consider (cf. (5))

fc(θ) =

K∑
k=1

ak(θ)p(k)
c = P(K)

c a(θ)

where ak(θ) :=
∑D
d=1 θdCkd, and C :=

[
c1 · · · cD

]
∈

RK×D is a dictionary of D coefficient vectors, the ith forming
the column ci ∈ SK . Since a(θ) = Cθ, it follows that

fc(θ) = P(K)
c Cθ =

D∑
d=1

θdf
(d)
c

where f
(d)
c :=

∑K
k=1 Ckdp

(k)
c is the dth diffusion.

To find the optimal θ, the optimization problem in (13) is
solved with

bc = − 2

|L|
(F∆

c)TD†LyLc (18)

Ac = (F∆
c)TD†LF

∆
c + λ(F∆

c)TD−1LD−1F∆
c (19)

where F∆
c := [f

(1)
c · · · f

(D)
c] effectively replaces P

(K)
c as

the basis of the space on which each fc is constructed. The
description of AdaDIF in dictionary mode is given as a special
case of Algorithm 1, together with the subroutine in Algorithm
2 for memory-efficient generation of F∆

c .
The motivation behind this dictionary-based variant of

AdaDIF is two-fold. First, it leverages the properties of a judi-
ciously selected basis of known diffusions, e.g. by constructing
C =

[
θPPR θHK · · ·

]
. In that sense, our approach is related

to multi-kernel methods, e.g. [1], although significantly more
scalable than the latter. Second, the complexity of AdaDIF in
dictionary mode is O(|E|(K+D)), where D can be arbitrarily
smaller than K, leading to complexity that is linear with respect
to both K and |E|.

6

Algorithm 1 ADAPTIVE DIFFUSIONS

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameter: λ, # of landing
probabilities: K, Dictionary mode ∈ {True,False}, Un-
constrained ∈ {True,False}
Output: Predictions: {ŷi}i∈U
Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do
Lc = {i ∈ L : yi = c}
if Dictionary mode then

F∆
c = DICTIONARY (W,Lc,K,C)

Obtain bc and Ac as in (18) and (19)
Fc = F∆

c

else
{P(K)

c , P̃
(K)
c } = LANDPROB(W,Lc,K)

Obtain bc and Ac as in (14) and (16)
Fc = P

(K)
c

end if
if Unconstrained then

Obtain θ̂c as in (20) and (21)
else

Obtain θ̂c by solving (13)
end if
fc(θ̂c) = Fcθ̂c

end for
Obtain ŷi = arg maxc∈Y

[
fc(θ̂c)

]
i
, ∀i ∈ U

Algorithm 2 LANDPROB

Input: W,Lc,K
Output: P(K)

c , P̃
(K)
c

H = WD−1

p
(0)
c = vc

for k = 1 : K + 1 do
p

(k)
c = Hp

(k−1)
c

p̃
(k)
c = p

(k−1)
c − p

(k)
c

end for

Algorithm 3 DICTIONARY

Input: W,Lc,K,C
Output: F∆

c

H = WD−1

p
(0)
c = vc
{f (d)
c }Dd=1 = 0

for k = 1 : K do
p

(k)
c = Hp

(k−1)
c

for d = 1 : D do
f

(d)
c = f

(d)
c + Ckdp

(k)
c

end for
end for

D. Unconstrained diffusions

Thus far, the diffusion coefficients θ have been constrained
on the K−dimensional probability simplex SK , resulting
in sparse solutions θ̂c, as well as fc(θ̂c) ∈ SN . The latter
also allows each fc(θ) to be interpreted as a pmf over V .

Nevertheless, the simplex constraint imposes a limitation to
the model: landing probabilities may only have non-negative
contribution on the resulting class distribution. Upon relaxing
this non-negativity constraint, (13) can afford a closed-form
solution as

θ̂c = A−1
c (bc − λ∗1) (20)

λ∗ =
1TA−1

c bc − 1

bTA−1
c bc

. (21)

Retaining the hyperplane constraint 1Tθ = 1 forces at least
one entry of θ to be positive. Note that for K > |L|, (20) may
become ill-conditioned, and yield inaccurate solutions. This
can be mitigated by imposing `2−norm regularization on θ,
which is equivalent to adding εI to Ac, with ε > 0 sufficiently
large to stabilize the linear system.

A step-by-step description of the proposed AdaDIF approach
is given by Algorithm 1, along with the subroutine in Algorithm
2. Determining the limiting behavior of unconstrained AdaDIF,
as well as exploring the effectiveness of different regularizers
(e.g., sparsity inducing `1−norm) is part of our ongoing
research. Towards the goal of developing more robust methods
to design diffusions, the ensuing section presents our proposed
approach that relies on minimizing the leave-one-out loss of
the resulting classifier.

IV. ADAPTIVE DIFFUSIONS ROBUST TO ANOMALIES

Although the loss function in (11) is simple and easy
to implement, it may lack robustness against nodes with
labels that do not comply with a diffusion-based information
propagation model. In real-world graphs, such ‘difficult’ nodes
may arise due to model limitations, observation noise, or even
deliberate mislabeling by adversaries. For such setups, this
section introduces a novel adaptive diffusion classifier with:
i) robustness in finding θ by ignoring errors that arise due to
outlying/anomalous nodes; as well as, ii) capability to identify
and remove such ‘difficult’ nodes.

Let us begin by defining the following per-class c ∈ Y loss

`crob(yLc
,θ) :=

∑
i∈L

1

di
([ȳLc

]i − [fc(θ;L \ i)]i)
2 (22)

where fc(θ;L \ i) is the class-c diffusion after removing the
ith node from the set of all labels. Intuitively, (22) evaluates
the ability of a propagation mechanism effected by θ to predict
the presence of class c label on each node i ∈ L, using
the remaining labeled nodes L \ i. Since each class-specific
distribution fc(θ) is constructed by random walks that are
rooted in Lc ⊆ L, it follows that

fc(θ;L \ i) =

{
fc(θ), i /∈ Lc

fc(θ;Lc \ i), i ∈ Lc
(23)

since fc(θ) is not directly affected by the removal of a label
that belongs to other classes, and it is not used as a class-c
seed. The class-c diffusion upon removing the ith node from
the seeds Lc is given as (cf. (5))

fc(θ;Lc \ i) =

K∑
k=1

θkp
(k)
Lc\i

7

where p
(k)
Lc\i := HkvLc\i, and

[vLc\i]j =

{
1/|Lc \ i|, j ∈ Lc \ i

0, else
. (24)

The robust loss in (22) can be expressed more compactly as

`crob(yLc ,θ) := ‖D−
1
2

L

(
ȳLc
−R(K)

c θ
)
‖22 (25)

where D
− 1

2

L :=
(
D†L

)− 1
2

, and

[
R(K)
c

]
ik

:=

[
p

(k)
Lc\i

]
i
, i ∈ Lc[

p
(k)
c

]
i
, else

. (26)

Since p
(k)
c = |Lc|−1

∑
i∈Lc

p
(k)
Lc\i, evaluating (25) only re-

quires the rows of R
(K)
c and entries of yLc that correspond

to L, since the rest of the diagonal entries of D†L are 0.
Having defined `crob(·), per-class diffusion coefficients θ̂c can
be obtained by solving

θ̂c = arg min
θ∈SK

`crob(yLc
,θ) + λθ‖θ‖22 (27)

where `2 regularization with parameter λθ is introduced in
order to prevent overfitting and numerical instabilities. Note
that smoothness regularization in (12) is less appropriate in
the context of robustness, since it promotes “spreading” of
the random walks (cf. Prop. 1), thus making class-diffusions
more similar and increasing the difficulty of detecting outliers.
Similar to (13), quadratic programming can be adopted to solve
(27).

Towards mitigating the effects of outliers, and inspired by
the robust estimators introduced in [20], we further enhance
`crob(·) by explicitly modeling the effect of outliers with a
sparse vector o ∈ RN , leading to the modified cost

`crob(yLc ,o,θ) := ‖D−
1
2

L

(
o + ȳLc −R(K)

c θ
)
‖22. (28)

The non-zero entries of o can capture large residuals (prediction
errors |[ȳLc

]i − [fc(θ;L \ i)]i |) which may be the result of
outlying, anomalous or mislabeled nodes. Thus, when operating
in the presence of anomalies, the robust classifier aims at
identifying both diffusion parameters {θ̂c}c∈Y as well as per
class outlier vectors {ôc}c∈Y . The two tasks can be performed
jointly by solving the following optimization problem

{θ̂c, ôc}c∈Y = arg min
θc∈SK
oc∈RN

∑
c∈Y

[
`crob(yLc ,oc,θc) + λθ‖θc‖22

]
+ λo‖D

− 1
2

L O‖2,1 (29)

where O :=
[
o1 · · · o|Y|

]
concatenates the outlier vectors

oc, and ‖X‖2,1 :=
∑I
i=1

√∑J
j=1X

2
i,j for any X ∈ RI×J .

The term λo‖D
− 1

2

L O‖2,1 in (29) acts as a regularizer that
promotes sparsity over the rows of O; it can also be interpreted
as an `1-norm regularizer over a vector that contains the `2
norms of the rows of O. The reason for using such block-
sparse regularization is to force outlier vectors oc of different
classes to have the same support (pattern of non-zero entries).

In other words, the |Y| different diffusion/outlier detectors are
forced to consent on which nodes are outliers.

Since (29) is non-convex, convergence of gradient-descent-
type methods to the global optimum is not guaranteed. Nev-
ertheless, since (29) is biconvex (i.e., convex with respect to
each variable) the following alternating minimization scheme

Ô(t)= arg min
O

∑
c∈Y

[
`crob(yLc

,oc, θ̂
(t−1)

c) + λθ‖θ̂
(t−1)

c ‖22
]

+ λo‖D
− 1

2

L O‖2,1 (30)

θ̂
(t)

c = arg min
θ∈SK

`crob(yLc
, ô(t)
c ,θ)+λθ‖θ‖22+λo‖D

− 1
2

L Ô(t)‖2,1
(31)

with Ô(0) := [0 . . .0] converges to a partial optimum [17].
By further simplifying (31) and solving (30) in closed form,

we obtain

θ̂
(t)

c = arg min
θ∈SK

`crob(ȳLc
+ ô(t−1)

c ,θ) + λθ‖θ‖22 (32)

Ô(t) = SoftThresλo

(
Ỹ(t)

)
(33)

where
Ỹ(t) :=

[
ỹ1

(t), . . . ,y
(t)
|Y|

]
is the matrix that concatenates the per class residual vectors
ỹ

(t)
c := ȳLc

−R
(K)
c θ̂

(t)

c , and Z = SoftThresλo
(X) is a row-

wise soft-thresholding operator such that

zi = ‖xi‖2[1− λo/(2‖xi‖2)]+

where zi and xi are the ith rows of Z and X respectively, see
e.g. [35]. Intuitively, the soft-thresholding operation in (33)
extracts the outliers by scaling down residuals and “trimming”
them wherever their across-classes `2 norm is below a certain
threshold.

The alternating minimization between (32) and (33) termi-
nates when

‖θ̂
(t)

c − θ̂
(t−1)

c ‖∞ ≤ ε, ∀c ∈ Y

where ε ≥ 0 is a prescribed tolerance. Having obtained
the tuples {θ̂c, ôc}c∈Y , one may remove the anomalous
samples that correspond to non-zero rows of Ô and perform
the diffusion with the remaining samples. The robust (r)
AdaDIF is summarized as Algorithm 4, and has O(K|L||E|)
computational complexity.

V. CONTRIBUTIONS IN CONTEXT OF PRIOR WORKS

Following the seminal contribution in [9] that introduced
PageRank as a network centrality measure, there has been a vast
body of works studying its theoretical properties, computational
aspects, as well as applications beyond Web ranking [26], [16].
Most formal approaches to generalize PageRank focus either
on the teleportation component (see e.g. [32], [33] as well
as [7] for an application to semi-supervised classification), or,
on the so-termed damping mechanism [13], [4]. Perhaps the
most general setting can be found in [4], where a family
of functional rankings was introduced by the choice of a
parametric damping function that assigns weights to successive

8

Algorithm 4 ROBUST ADAPTIVE DIFFUSIONS

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameters: λθ, λo, # of landing
probabilities: K
Output: Predictions: {ŷi}i∈U

Outliers: ∪
c∈Y
Loc

Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do
Lc = {i ∈ L : yi = c}
for i ∈ Lc do
{p(k)
Lc\i}

K
k=1 = LANDPROB(W,Lc \ i,K)

end for
Obtain R

(K)
c as in (26)

end for
Ô(0) = [0, . . . ,0] , t = 0

while ‖θ̂
(t)

c − θ̂
(t−1)

c ‖∞ ≤ ε do
t← t+ 1

Obtain {θ̂
(t)

c }c∈Y as in (32)
Obtain Ô(t) as in (33)

end while
Set of outliers: S := {i ∈ L : ‖[Ô]i,:‖2 > 0}
for c ∈ Y do
Loc = Lc ∩ S
Lc ← Lc \ Loc

end for
Obtain ŷi = arg maxc∈Y

[
fc(θ̂c)

]
i
, ∀i ∈ U

steps of a walk initialized according to the teleportation
distribution. The per class distributions produced by AdaDIF
are in fact members of this family of functional rankings.
However, instead of choosing a fixed damping function as
in the aforementioned approaches, AdaDIF learns a class-
specific and graph-aware damping mechanism. In this sense,
AdaDIF undertakes statistical learning in the space of functional
rankings, tailored to the underlying semi-supervised classifi-
cation task. A related method termed AptRank was recently
proposed in [46] specifically for protein function prediction.
Differently from AdaDIF the method exploits meta-information
regarding the hierarchical organization of functional roles of
proteins and it performs random walks on the heterogeneous
protein-function network. AptRank splits the data into training
and validation sets of predetermined proportions and adopt as
cross-validation approach for obtaining diffusion coefficients.
Furthermore a1) AptRank trains a single diffusion for all
classes whereas AdaDIF identifies different diffusions, and a2)
the proposed robust leave-one-out method (r-AdaDIF) gathers
residuals from all leave-one-out splits into one cost function
(cf. (22)) and then optimizes the (per class) diffusion.

Recently, community detection (CD) methods were proposed
in [47] and [45], that search the Krylov subspace of landing
probabilities of a given community’s seeds, to identify a
diffusion that satisfies locality of non-zero entries over the
nodes of the graph. In CD, the problem definition is: “given
certain members of a community, identify the remaining (latent)
members.” There is a subtle but important distinction between

TABLE I
NETWORK CHARACTERISTICS

Graph |V| |E| |Y| Multilabel

Citeseer 3,233 9,464 6 No
Cora 2,708 10,858 7 No
PubMed 19,717 88,676 3 No
PPI (H. Sapiens) 3,890 76,584 50 Yes
Wikipedia 4,733 184,182 40 Yes
BlogCatalog 10,312 333,983 39 Yes

CD and semi-supervised classification (SSC): CD focuses on
the retrieval of communities (that is nodes of a given class),
whereas SSC focuses on the predicting the labels/attributes
of every node. While CD treats the detection of various
overlapping communities of the graph as independent tasks,
SSC classifies nodes by taking all information from labeled
nodes into account. More specifically, the proposed AdaDIF
trains the diffusion of each class by actively avoiding the
assignment of large diffusion values to nodes that are known
(they have been labeled) to belong to a different class. Another
important difference of AdaDIF with [47] and [45]—which
again arises from the different contexts—is the length of the
walk compared to the size of the graph. Since [47] and [45]
aim at identifying small and local communities, they perform
local walks of length smaller than the diameter of the graph. In
contrast, SSC typically demands a certain degree of globality
in information exchange, achieved by longer random walks
that surpass the graph diameter.

AdaDIF also shares links with SSL methods based on graph
signal processing proposed in [37], and further pursued in
[12] for bridge monitoring; see also [38] and [14] for recent
advances on graph filters. Similar to our approach, these
graph filter based techniques are parametrized via assigning
different weights to a number of consecutive powers of a
matrix related to the structure of the graph. Our contribution
however, introduces different loss and regularization functions
for adapting the diffusions, including a novel approach for
training the model in an anomaly/outlier-resilient manner.
Furthermore, while [37] focuses on binary classification and
[12] identifies a single model for all classes, our approach
allows for different classes to have different propagation
mechanisms. This feature can accommodate differences in
the label distribution of each class over the nodes, while
also making AdaDIF readily applicable to multi-label graphs.
Moreover, while in [37] the weighting parameters remain
unconstrained and in [12] belong to a hyperplane, AdaDIF
constrains the diffusion parameters on the probability simplex,
which allows the random-walk-based diffusion vectors to denote
valid probability mass functions over the nodes of the network.
This certainly enhances interpretability of the method, improves
the numerical stability of the involved computations, and also
reduces the search-space of the model is beneficial under
data scarcity. Finally, imposing the simplex constraint makes
the model amenable to a rigorous analysis that relates the
dimensionality of the feature space to basic graph properties,
as well as to a disciplined exploration of its limiting behavior.

9

5 10 15 20 25 30

60

65

70

of landing probabilities (K)

M
ic

ro
-F

1
Sc

or
e

(%
)

PPR
HK
AdaDIF

Fig. 4. Micro-F1 score for AdaDIF and non-adaptive diffusions on 5% labeled
Cora graph as a function of the length of underline random walks.

VI. EXPERIMENTAL EVALUATION

Our experiments compare the classification accuracy of
the novel AdaDIF approach with state-of-the-art alternatives.
For the comparisons, we use 6 benchmark labeled graphs
whose dimensions and basic attributes are summarized in
Table I. All 6 graphs have nodes that belong to multiple
classes, while the last 3 are multilabeled (each node has one
or more labels). We evaluate performance of AdaDIF and the
following: i) PPR and HK, which are special cases of AdaDIF
as discussed in Section II; ii) Label propagation (LP) [43];
iii) Node2vec [18]; iv) Deepwalk [34]; v) Planetoid-G [42];
and, vi) graph convolutional networks (GCNs) [21]. We note
here that AptRank [46] was not considered in our experiments
since it relies on meta-information that is not available for the
benchmark datasets used here.

We performed 10-fold cross-validation to select parameters
needed by i) - v). For HK, we performed grid search over
t ∈ [1.0, 5.0, 10.0, 15.0]. For PPR, we fixed α = 0.98 since it is
well documented that α close to 1 yields reliable performance;
see e.g., [28]. Both HK and PPR were run for 50 steps for
convergence to be in effect; see Fig 4; LP was also run
for 50 steps. For Node2vec, we fixed most parameters to
the values suggested in [18], and performed grid search for
p, q ∈ [0.25, 1.0, 2.0, 4.0]. Since Deepwalk can be seen as
Node2vec with p = q = 1.0, we used the Node2vec Python
implementation for both. As in [18], [34], we used the embeded
node-features to train a supervised logistic regression classifier
with `2 regularization. For AdaDIF, we fixed λ = 15.0, while
K = 15 was sufficient to attain desirable accuracy (cf. Fig.
4); only the values of Boolean variables Unconstained and
Dictionary Mode (see Algorithm 1) were tuned by validation.
For the multilabel graphs, we found λ = 5.0 and even shorter
walks of K = 10 to perform well. For the dictionary mode of
AdaDIF, we preselected D = 10, with the first five collumns of
C being HK coefficients with parameters t ∈ [5, 8, 12, 15, 20],
and the other five polynomial coefficients ci = kβ with
β ∈ [2, 4, 6, 8, 10].

For multiclass experiments, we evaluated the performance of
all algorithms on the three benchmark citation networks, namely

Cora, Citeseer, and PubMed. We obtained the labels of
an increasing number of nodes via uniform, class-balanced
sampling, and predicted the labels of the remaining nodes.
Thus, instead of sampling nodes over the graph uniformly at
random, we randomly sample a given number of nodes per
class. For each graph, we performed 20 experiments, each time
sampling 5, 10, and 20 nodes per class. For each experiment,
classification accuracy was measured on the unlabeled nodes
in terms of Micro-F1 and Macro-F1 scores; see e.g., [30]. The
results were averaged over 20 experiments, with mean and
standard deviation reported in Table II. Evidently, AdaDIF
achieves state of the art performance for all graphs. For Cora
and PubMed, AdaDIF was switched to dictionary mode, while
for Citeseer, where the gain in accuracy is more significant,
unconstrained diffusions were employed. In the multiclass
setting, diffusion-based classifiers (AdaDIF, PPR, and HK)
outperformed the embedding-based methods by a small margin,
and GCNs by a larger margin. It should be noted however that
GCNs were mainly designed to combine the graph with node
features. In our “featureless” setting, we used the identity matrix
columns as input features, as suggested in [21, Appendix].

The scalabilty of AdaDIF is reflected on the runtime
comparisons listed in Fig. 7. All experiments were run on
a machine with i5 @3.50 Mhz CPU, and 16GB of RAM.
We used the Python implementations provided by the authors
of the compared algorithms. The Python implementation of
AdaDIF, uses only tools provided by scipy, numpy, and CVX-
OPT libraries. We also developped an efficient implementation
that exploits parallelism, which is straightforward since each
class can be treated separately. While AdaDIF incurs (as
expected) a relatively small computational overhead over fixed
diffusions, it is faster than GCNs that use Tensorflow, and
orders of magnitude faster than embedding-based approaches.

Finally, Table III presents the results on multilabel graphs,
where we compare with Deepwalk and Node2vec, since the
rest of the methods are designed for multiclass problems. Since
these graphs entail a large number of classes, we increased the
number of training samples. Similar to [18] and [34], during
evaluation of accuracy the number of labels per sampled node is
known, and check how many of them are in the top predictions.
First, we observe that AdaDIF markedly outperforms PPR and
HK across graphs and metrics. Furthermore, for the PPI and
BlogCatalog graphs the Micro-F1 score of AdaDIF comes
close to that of the much heavier state-of-the-art Node2vec.
Finally, AdaDIF outperforms the competing alternatives in
terms of Macro-F1 score. It is worth noting that for multilabel
graphs with many classes, the performance boost over fixed
diffusions can be largely attributed to AdaDif’s flexibility to
treat each class differently. To demonstrate that different classes
are indeed diffused in a markedly different manner, Fig. 6
plots all 50 diffusion coefficient vectors {θc}c∈C yielded by
AdaDIF on the PPI graph with 30% of nodes labeled. Each
line in the plot corresponds to the values of θc for a different
c; evidently, while the overall “form” of the corresponding
diffusion coefficients adheres to the general pattern observed
in Fig.2 there is indeed large diversity among classes.

10

TABLE II
MICRO F1 AND MACRO F1 SCORES ON MULTICLASS NETWORKS (CLASS-BALANCED SAMPLING)

Graph Cora Citeseer PubMed

|Lc| 5 10 20 5 10 20 5 10 20

M
ic

ro
-F

1

AdaDIF 67.5± 2.2 71.0± 2.0 73.2± 1.2 42.3± 4.4 49.5± 3.0 53.5± 1.2 62.0± 6.0 68.5± 4.5 74.1± 1.7
PPR 67.1± 2.3 70.2± 2.1 72.8± 1.5 41.1± 5.2 48.7± 2.5 52.5± 0.9 63.1± 1.1 69.5± 3.8 74.1± 1.8
HK 67.0± 2.5 70.5± 2.5 72.9± 1.2 40.0± 5.6 48.0± 2.4 51.8± 1.1 62.0± 0.6 68.3± 4.7 74.0± 1.8
LP 61.8± 3.5 66.3± 4.2 71.0± 2.7 40.7± 2.5 48.0± 3.7 51.9± 1.3 56.2± 11.0 68.0± 6.1 69.3± 2.4
Node2vec 68.9± 1.9 70.2± 1.6 72.4± 1.2 39.2± 3.7 46.5± 2.4 51.0± 1.4 61.7± 13.0 66.4± 4.6 71.1± 2.4
Deepwalk 68.4± 2.0 70.0± 1.6 72.0± 1.4 38.4± 3.9 45.5± 2.0 50.4± 1.5 61.5± 1.3 65.8± 5.0 70.5± 2.2
Planetoid-G 63.5± 4.7 65.6± 2.7 69.0± 1.5 37.8± 4.0 44.9± 3.3 49.8± 1.4 60.7± 2.0 63.4± 2.3 68.0± 1.5
GCN 60.1± 3.7 65.5± 2.5 68.6± 1.9 38.3± 3.2 44.2± 2.2 48.0± 1.8 60.0± 1.9 63.6± 2.5 70.5± 1.5

M
ac

ro
-F

1

AdaDIF 65.5± 2.5 70.6± 2.2 72.0± 1.1 36.1± 3.9 44.0± 2.8 48.1± 1.2 60.4± 0.6 67.0± 4.4 72.6± 1.8
PPR 65.0± 2.3 70.0± 2.3 71.9± 1.5 34.7± 5.0 43.5± 2.3 47.6± 0.6 61.7± 0.6 68.1± 3.6 72.6± 1.8
HK 65.0± 2.5 70.0± 2.6 72.0± 1.1 33.9± 5.4 42.8± 2.2 47.0± 0.6 60.5± 0.6 66.8± 4.7 72.7± 1.8
LP 60.1± 3.2 66.5± 4.1 70.6± 2.3 34.8± 4.6 41.8± 3.9 51.5± 1.2 51.5± 12.3 66.2± 6.6 67.8± 2.0
Node2vec 62.4± 2.0 64.7± 1.7 69.2± 1.2 34.6± 2.7 41.6± 1.9 45.3± 1.5 59.5± 1.2 64.0± 3.8 72.3± 1.4
Deepwalk 61.8± 2.2 64.5± 2.0 68.5± 1.4 34.0± 2.5 41.0± 2.0 44.7± 1.8 59.3± 1.2 63.8± 4.0 72.1± 1.3
Planetoid-G 59.9± 4.5 63.0± 3.0 68.7± 1.9 33.3± 2.5 40.2± 2.2 43.6± 2.0 57.7± 1.5 61.9± 3.5 66.1± 1.8
GCN 53.8± 6.6 61.9± 2.6 63.8± 1.5 32.8± 2.0 39.1± 1.8 43.0± 1.7 54.4± 4.1 57.2± 5.2 60.5± 2.4

TABLE III
MICRO F1 AND MACRO F1 SCORES OF VARIOUS ALGORITHMS ON MULTILABEL NETWORKS

Graph PPI BlogCatalog Wikipedia

|L|/|V| 10% 20% 30% 10% 20% 30% 10% 20% 30%

M
ic

ro
-F

1

AdaDIF 15.4± 0.5 17.9± 0.7 19.2± 0.6 31.5± 0.6 34.4± 0.5 36.3± 0.4 28.2± 0.9 30.0± 0.5 31.2± 0.7
PPR 13.8± 0.5 15.8± 0.6 17.0± 0.4 21.1± 0.8 23.6± 0.6 25.2± 0.6 10.5± 1.5 8.1± 0.7 7.2± 0.5
HK 14.5± 0.5 16.7± 0.6 18.1± 0.5 22.2± 1.0 24.7± 0.7 26.6± 0.7 9.3± 1.4 7.3± 0.7 6.0± 0.7
Node2vec 16.5± 0.6 18.2± 0.3 19.1± 0.3 35.0± 0.3 36.3± 0.3 37.2± 0.2 42.3± 0.9 44.0± 0.6 45.1± 0.4
Deepwalk 16.0± 0.6 17.9± 0.5 18.8± 0.4 34.2± 0.4 35.7± 0.3 36.4± 0.4 41.0± 0.8 43.5± 0.5 44.1± 0.5

M
ac

ro
-F

1 AdaDIF 13.4± 0.6 15.4± 0.7 16.5± 0.7 23.0± 0.6 25.3± 0.4 27.0± 0.4 7.7± 0.3 8.3± 0.3 9.0± 0.2
PPR 12.9± 0.4 14.7± 0.5 15.8± 0.4 17.3± 0.5 19.5± 0.4 20.8± 0.3 4.4± 0.3 3.8± 0.6 3.6± 0.2
HK 13.4± 0.6 15.4± 0.5 16.5± 0.4 18.4± 0.6 20.7± 0.4 22.3± 0.4 4.2± 0.4 3.7± 0.5 3.5± 0.2
Node2vec 13.1± 0.6 15.2± 0.5 16.0± 0.5 16.8± 0.5 19.0± 0.3 20.1± 0.4 7.6± 0.3 8.2± 0.3 8.5± 0.3
Deepwalk 12.7± 0.7 15.1± 0.6 16.0± 0.5 16.6± 0.5 18.7± 0.5 19.6± 0.4 7.3± 0.3 8.1± 0.2 8.2± 0.2

A. Analysis/interpretation of results

Here we will follow an experimental approach that is aimed
at understanding and interpreting our results. We will focus on
diffusion-based classifiers, along with a simple benchmark for
diffusion-based classification: the k−step landing probabilities.
Specifically, we compare the classification accuracy on the
three multiclass datasets of AdaDIF, PPR, and HK, with the
accuracy of the classifier that uses only the k−th landing
probability vectors {p(k)

c }c∈Y,k∈[1,K]. The setting is similar
to the one in the previous section, and with class-balanced
sampling of 20 nodes per class, while the k−step classifiers
were examined for a wide range of steps k ∈ [1, 100]. The
k−step classifier reveals the predictive power of individual
landing probabilities, resulting in curves (see Fig. 5) that appear
to be different for each network, characterizing the graph-label
distribution relationship of the latter. For the Cora graph
(left two plots), performance of the k−step classifier improves
sharply after the first few steps, peaks for k ≈ 20, and then
quickly degrades, suggesting that using the landing probabilities
of k > 40 or 50 would most likely degrade the performance
of a diffusion-based classifier. Interestingly, AdaDIF relying
on combinations of the first 15 steps, and PPR and HK of
the first 50, all achieve higher accuracy than that of the best

single step. On the other hand, the Citeseer graph (middle
two plots) behaves in a significantly different manner, with the
k−step classifier requiring longer walks to reach high accuracy
that was retained for much longer. Furthermore, accumulating
landing probabilities the way PPR or HK does yields lower
Micro-F1 accuracy than that of the single best step. On the
other hand, by smartly combining the first 15 steps that are
of lower quality, AdaDIF surpasses the Micro-F1 scores of
the longer walks. Interestingly, the Macro-F1 metric for the
Citeseer behaves differently than the Micro-F1, and quickly
decreases after ∼ 25 steps. The disagreement between the two
metrics can be explained as the diffusions of one or more
of the larger classes gradually “overwhelms” those of one or
more smaller classes, thus lowering the Macro-F1 score, since
the latter is a metric that averages per-class. In contrast, the
Micro-F1 metric averages per-node and takes much less of an
impact if a few nodes from the smaller classes are mislabeled.
Finally, for the PubMed graph (right two plots), steps in the
range [20, 40] yield consistently high accuracy both in terms
of Micro- as well as Macro-averaged F1-score. Since HK and
mostly PPR largely accumulate steps in that range, it seems
reasonable that both fixed diffusions are fairly accurate in the
PubMed graph.

11

0 20 40 60 80 100

0.66

0.68

0.7

0.72

0.74
M

ic
ro

F1
-s

co
re

0 20 40 60 80 100
0.48

0.5

0.52

0.54

0 20 40 60 80 100
0.68

0.7

0.72

0.74

0.76

0 20 40 60 80 100

0.66

0.68

0.7

0.72

k

M
ac

ro
F1

-s
co

re

0 20 40 60 80 100

0.44

0.46

0.48

k
0 20 40 60 80 100

0.7

0.71

0.72

0.73

0.74

k

k-step landing probabilities AdaDIF PPR HK

Fig. 5. Classification accuracy of AdaDIF, PPR, and HK compared to the accuracy of k−step landing probability classifier. Top Left) Cora Micro-F1
score; Bottom Left) Cora Macro-F1 score; Top Middle) Citeseer Micro-F1 score; Bottom Middle) Citeseer Macro-F1 score; Top Right) PubMed
Micro-F1 score; Bottom Right) PubMed Macro-F1 score

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

k

Fig. 6. AdaDIF diffusion coefficients for the 50 different classes of PPI
graph (30% sampled). Each line corresponds to a different θc. Diffusion is
characterized by high diversity among classes.

B. Tests on simulated label-corruption setup

Here we outline experimental results performed to evaluate
the performance of different diffusion-based classifiers in the
presence of anomalous nodes. The main goal is to evaluate
whether r-AdaDIF (Algorithm 4) yields improved performance
over AdaDIF, HK and PPR, as well as the ability of r-AdaDIF

Cora Citeseer PubMed
10−1

101

103

105

R
el

at
iv

e
R

un
tim

e

PPR/HK/LP AdaDIF GCN
Node2vec/Deepwalk Planetoid-G

Fig. 7. Relative runtime comparisons for multiclass graphs.

to detect anomalous nodes. We also tested a different type of
rounding from class-diffusions to class labels that was shown
in [44] to be robust in the presence of erroneous labels on
a graph constructed by images of handwritten digits. The
idea is to first normalize diffusions with node degrees, sort
each diffusion vector, and assign to each node the class for
which the corresponding rank is higher. We applied this type
of rounding on PPR diffusions (denoted as PPR w. ranking).
Since a ground truth set of anomalous nodes is not available
in real graphs, we chose to infuse the true labels with artificial
anomalies generated by the following simulated label corruption
process: Go through yL and for each entry [yL]i = c draw with
probability pcor a label c′ ∼ Unif{Y \ c}; and replace [yL]i ←

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

60

65

70

Label corruption rate pcor

M
ic

ro
-F

1
Sc

or
e

(%
)

r-AdaDIF
AdaDIF
PPR
HK
PPR w. ranking

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

60

65

70

Label corruption rate pcor

M
ac

ro
-F

1
Sc

or
e

(%
)

r-AdaDIF
AdaDIF
PPR
HK
PPR w. ranking

Fig. 8. Classification accuracy of various diffusion-based classifiers on Cora, as a function of the probability of label corruption.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pFA

p
D

pcor = 0.35
pcor = 0.15
pcor = 0.05

Fig. 9. Anomaly detection performance of r-AdaDIF for different label
corruption probabilities. The horizontal axis corresponds to the frequency
with which r-AdaDIF returns a true positive (probability of detection) and the
vertical axis corresponds to the frequency of false positives (probability of
false alarm).

c′. In other words, anomalies are created by corrupting some
of the true labels by randomly and uniformly “flipping” them
to a different label. Increasing the corruption probability pcor of
the training labels yL is expected to have increasingly negative
impact on classification accuracy over yU . Indeed, as depicted
in Fig. 8, the accuracy of all diffusion-based classifiers on Cora
graph degrades as pcor increases. All diffusions were run for
K = 50, while for r-AdaDIF we found λo = 14.6× 10−3 and
λθ = 67.5× 10−5 to perform well for moderate values of pcor.
Results were averaged over 50 Monte Carlo experiments, and
for each experiment 5% of the nodes were sampled uniformly
at random. While tuning λo for a specific pcor generally yields
improved results, we use the same λo across the range of
pcor values, since the true value of the latter is generally not
available in practice. In this setup, r-AdaDIF demonstrates
higher accuracy compared to non-robust classifiers. Moreover,
the performance gap increases as more labels become corrupted,
until it reaches a “break point” at pcor ≈ 0.35. Interestingly, r-
AdaDIF performs worse in the absence of anomalies (pcor = 0)
that can be attributed to the fact that it only removes useful

samples and thus reduces the training set. Although PPR w.
ranking displays relative robustness as pcor increases, overall
it performs worse than PPR with value based rounding, at least
on the Cora graph.

As mentioned earlier, the performance of r-AdaDIF in terms
of outlier detection depends on parameter λo. Specifically, for
λo → 0 the regularizer in (29) is effectively removed and
all samples are characterized as outliers. On the other hand,
for λo � 1 (29) yields Ô = [0, . . . ,0], meaning that no
outliers are unveiled. For intermediate values of λo, r-AdaDIF
trades off falsely identifying nominal samples as outliers
(false alarm) with correctly identifying anomalies (correct
detection). This tradeoff of r-AdaDIF’s anomaly detection
behavior was experimentally evaluated over 50 Monte Carlo
runs by sweeping over a large range of values of λo, and
for different values of pcor; see the probability of detection
(pD) versus probability of false alarms (pFA) depicted in Fig.
9. Evidently, r-AdaDIF performs much better than a random
guess (“coin toss”) detector whose curve is given by the grey
dotted line, while the detection performance improves as the
corruption rate decreases.

VII. CONCLUSIONS

The present work, introduces a principled, data-efficient
approach to learning class-specific diffusion functions tailored
for the underlying network topology. Experiments on real
networks confirm that adapting the diffusion function to the
given graph and observed labels, significantly improves the
performance over fixed diffusions; reaching – and many times
surpassing – the classification accuracy of computationally
heavier state-of-the-art competing methods.

Emerging from this work are many exciting directions to
explore. First, one can investigate different cost functions with
respect to which the diffusions are adapted, e.g., by taking into
account robustness of the resulting classifier in the presence
of adversarial data. Furthermore, it is worth investigating the
space of nonlinear functions of the landing probabilities to
determine the degree to which accuracy can be boosted further.
Last but not least, it will be interesting to develop adaptive
diffusion methods, where learning and adaptation are performed
on-the-fly, without any memory and computational overhead.

13

APPENDIX

A. Proof of Proposition 1

For λ → ∞, the effect of `(·) in (10) vanishes, and the
optimization problem becomes equivalent to solving

min
θ∈SK

θTAθ (34)

where A := (P
(K)
c)TD−1LD−1P

(K)
c has (i, j) entry given

by Aij = (p
(i)
c)TD−1LD−1p

(j)
c ; and p

(K)
c is the vector of

K-step landing probabilities with initial distribution vc and
transition matrix H =

∑N
n=1 λnunv

T
n , where λ1 > λ2 >

· · · > λN are its eigenvalues. Since H is a column-stochastic
transition probability matrix, it holds that λ1 = 1, v = 1,
and u1 = π, where π = limk→∞ p

(k)
c is the steady-state

distribution that can be also expressed as π = d/(2|E|) [27].
The landing probability vector for class c is thus

p(K)
c = HKvc =

[
1

2|E|
d1T +

N∑
n=2

λKn unv
T
n

]
vc

=
1

2|E|
d +

N∑
n=2

λKn unγn ≈
1

2|E|
d + λK2 u2γ2 (35)

where γn := vT
nvc, and the approximation in (35) holds

because λK2 � λKn , for n ∈ [3, N], and K large enough
but finite. Using (35), Aij can be rewritten as

Aij =

[
1

2|E|
dT + λi2u

T
2 γ2

]
D−1LD−1

[
1

2|E|
d + λj2u2γ2

]
=

[
1

2|E|
1T + λi2u

T
2D
−1γ2

]
L

[
1

2|E|
1 + λj2D

−1u2γ2

]
=

1

4|E|2
1TL1 +

λi2γ2

2|E|
uT

2D
−1L1 +

λj2γ2

2|E|
1TLD−1u2

+ γ2
2λ

i+j
2 uT

2D
−1LD−1u2

=Cλi+j2 (36)

where C := γ2
2u

T
2D
−1LD−1u2, the second equality uses

D−1d = 1, and the last equality follows because L1 =
0. Using (36), one obtains A = Cλ2λ

T
2 , where λ2 :=[

λ2 λ2
2 · · · λK2

]T
, while (34) reduces to

min
θ∈SK

(
λT

2θ
)2

. (37)

Since λT
2θ > 0 ∀θ ∈ SK , it can be shown that the KKT

optimality conditions for (37) are identical to those of

min
θ∈SK

λT
2θ. (38)

Therefore, (37) admits minimizer(s) identical to (38). Fi-
nally, we will show that the minimizer of (38) is eK .

Since the problem is convex, it suffices to show that
∇T

θ (λT
2θ)θ=eK

(θ − eK) ≥ 0 ∀θ ∈ SK , or, equivalently

λT
2 (θ − eK) ≥ 0⇔

K∑
k=1

θkλ
k
2 − λK2 ≥ 0

⇔
K∑
k=1

θkλ
k−K
2 ≥ 1

⇔
K∑
k=1

θkλ
k−K
2 ≥

K∑
k=1

θk

⇔
K∑
k=1

θk
(
λk−K2 − 1

)
≥ 0

which holds since θ ≥ 0 and λk−K2 ≥ 1 ∀k ∈ [1,K], and
completes the proof of the proposition.

B. Proof of Theorem 1

We need to find the smallest integer K such that
maxθ∈SK‖y − y̌‖ ≤ γ. We have

‖y − y̌‖ = ‖X+θ −X−θ − X̌+θ + X̌−θ‖ ≤
≤ ‖θKp

(K)
+ − θKp

(K)
− ‖+ ‖θKp

(K+1)
+ − θKp

(K+1)
− ‖

≤ ‖HKp+ −HKp−‖+ ‖HK+1p+ −HK+1p−‖ (39)

since θ ∈ SK . Therefore, to determine an upper bound for the
γ-distinguishability threshold it suffices to find the smallest
integer K for which (39) is upper bounded by γ.

Let q1, . . . ,qN be the eigenvectors corresponding to the
eigenvalues 0 = µ1 < µ2 ≤ · · · ≤ µN < 2 of the normalized
Laplacian L̃. The transition probability matrix is then

H = D
1
2 (I− L̃)D−

1
2 . (40)

For the first term of the RHS of (39), we have

‖HKp+ −HKp−‖ ≤ ‖HKp+ − π‖+ ‖HKp− − π‖

= ‖D 1
2 (I− L̃)KD−

1
2p+ −

D1

2|E|
‖

+ ‖D 1
2 (I− L̃)KD−

1
2p− −

D1

2|E|
‖. (41)

Since q1 = D
1
2 1√
2|E|

[27], we have for c ∈ {+,−} that

D
1
2q1〈q1,D

− 1
2pc〉 = D

1
2
D

1
21√

2|E|

〈
D

1
21√

2|E|
,D−

1
2pc

〉

=
D1√
2|E|
〈1,pc〉√

2|E|
=

D1

2|E|
. (42)

Upon defining M := (I−L̃)K−q1q
T
1 , and taking into account

(42), inequality (41) can be written as

‖HKp+ −HKp−‖

≤ ‖D 1
2 ‖‖M‖

(
‖D− 1

2p+‖+ ‖D− 1
2p−‖

)
. (43)

14

The factors in (43) can be bounded as

‖D− 1
2p+‖ =

√√√√∑
i∈L+

(
1

|L+|
d
− 1

2
i

)2

=

√∑
i∈L+

1

|L+|2
d−1
i ≤

1√
dmin+ |L+|

, (44)

‖D− 1
2p−‖ =

√∑
i∈L−

1

|L−|2
d−1
i ≤

1√
dmin− |L−|

, (45)

‖M‖ = sup
v

〈Mv,v〉
Mv

= max
i6=1
|1− µi|K , (46)

‖D 1
2 ‖ =

√
dmax (47)

where (46) follows from the properties of the normalized
Laplacian. Therefore, (43) becomes

‖HKp+ −HKp−‖ ≤

(
1√

dmin− |L−|
+

1√
dmin+

|L+|

)
·max
i 6=1
|1− µi|K ·

√
dmax. (48)

Letting µ′ := min{µ2, 2− µN}, and using the fact that

(1− µ′)K ≤ e−Kµ
′

(49)

we obtain

‖HKp+ −HKp−‖

≤

(√
dmax

dmin− |L−|
+

√
dmax

dmin+ |L+|

)
e−Kµ

′
. (50)

Likewise, we can bound the second term in (39) as

‖HK+1p+ −HK+1p−‖

≤

(√
dmax

dmin− |L−|
+

√
dmax

dmin+
|L+|

)
e−(K+1)µ′ . (51)

In addition, we note that for all µ′ > 0,K ∈ Z it holds that

e−Kµ
′
+ e−(K+1)µ′ < 2e−Kµ

′
. (52)

Upon substituting (50) and (51) into (39), and also using (52),
we arrive at

‖y− y̌‖ ≤ 2

(√
dmax

dmin− |L−|
+

√
dmax

dmin+ |L+|

)
e−Kµ

′
. (53)

To determine an upper bound on the γ-distinguishability
threshold, it suffices to find the smallest integer K for which
(53) becomes less than γ; that is,

2

(√
dmax

dmin− |L−|
+

√
dmax

dmin+
|L+|

)
e−Kµ

′
≤ γ. (54)

Multiplying both sides of (54) by the positive number eKµ
′
/γ,

and taking logarithms yields

log
[

2
√
dmax

γ

(√
1

dmin− |L−|
+
√

1
dmin+

|L+|

)]
≤ Kµ′.

Therefore, using as landing probabilities⌈
1

µ′
log
[

2
√
dmax

γ

(√
1

dmin− |L−|
+
√

1
dmin+

|L+|

)]⌉

the `2 distance between any two diffusion-based classifiers will
be at most γ; and the proof is complete.

C. Bound for PageRank

Substituting PageRank’s diffusion coefficients in the proof
of Theorem 1, inequality (54) becomes

2(1− α)αK

(√
dmax

dmin− |L−|
+

√
dmax

dmin+
|L+|

)
e−Kµ

′
≤ γ.

Multiplying both sides by the positive number eKµ
′
α−K/γ

and taking logarithms yields

log
[

2
√
dmax

γ/(1−α)

(√
1

dmin− |L−|
+
√

1
dmin+

|L+|

)]
≤ K(µ′−logα)

which results in the γ-distinguishability threshold bound

KPR
γ ≤ 1

µ′−logα log
[

2
√
dmax

γ/(1−α)

(√
1

dmin− |L−|
+
√

1
dmin+

|L+|

)]
.

REFERENCES

[1] A. Argyriou, M. Herbster, and M. Pontil, “Combining graph laplacians
for semi–supervised learning,” in Proc. Advances in Neural Information
Processing Systems, Vancouver, Can., 2006, pp. 67–74.

[2] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in
Proc. Advances in Neural Information Processing Systems, Barcelona,
Spain, 2016, pp. 1993–2001.

[3] K. Avrachenkov, A. Mishenin, P. Gonçalves, and M. Sokol, “Generalized
optimization framework for graph-based semi-supervised learning,” Proc.
SIAM Int. Conf. on Data Mining, Anaheim, CA, 2012, pp. 966–974.

[4] R. Baeza-Yates, P. Boldi, and C. Castillo, “Generic damping functions
for propagating importance in link-based ranking,” Internet Math., vol. 3,
no. 4, pp. 445–478, 2006.

[5] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Mach. Learn. Res., no. 7, Nov, 2006, pp. 2399–2434.

[6] Y. Bengio, O. Delalleau, and N. Le Roux, “Label propagation and
quadratic criterion,” in Semi-Supervised Learning. Cambridge, MA, USA:
MIT Press, 2006.

[7] D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, “Random
walks with restarts for graph-based classification: Teleportation tuning
and sampling design,” in Proc. of IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, Calgary, Can., April 2018.

[8] D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, ”AdaDIF:
Adaptive Diffusions for Efficient Semi-supervised Learning over Graphs,”
Proc. of IEEE Int. Conf. on Big Data, Seattle, Washington, Dec. 10-13,
2018.

[9] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Comput. Netw., vol. 56, no. 18, pp.
3825–3833, 2012.

[10] E. Buchnik and E. Cohen, “Bootstrapped graph diffusions: Exposing the
power of nonlinearity,” arXiv preprint arXiv:1703.02618, 2017.

[11] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning.
Cambridge, MA, USA: MIT Press, 2006.

[12] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovacevic,
“Semi-supervised multiresolution classification using adaptive graph
filtering with application to indirect bridge structural health monitoring,”
IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2879–2893, June 2014.

[13] P. G. Constantine and D. F. Gleich, “Random alpha pagerank,” Internet
Math., vol. 6, no. 2, pp. 189–236, 2009.

[14] M. Contino, E. Isufi and G. Leus,“Distributed edge-variant graph filters,”
Proc. Int. Work. on Computational Advances in Multi-Sensor Adaptive
Processing, Curacao, Dutch Antilles, Dec. 2017, pp. 1-5.

[15] F. Chung, “The heat kernel as the pagerank of a graph,” Proc. Natl. Acad.
Sci., vol. 104, no. 50, pp. 19 735–19 740, 2007.

[16] D. F. Gleich, “Pagerank beyond the web,” SIAM Rev., vol. 57, no. 3, pp.
321–363, 2015.

[17] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization
with biconvex functions: a survey and extensions,” Math. Methods of
Oper. Res., vol. 66, no. 3, pp. 373–407, Dec. 2007.

15

[18] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, San Francisco, CA, 2016, pp. 855–864.

[19] T. Joachims, “Transductive learning via spectral graph partitioning,” Proc.
of Int. Conf. on Machine Learn., Washington DC, 2003, pp. 290–297.

[20] V. Kekatos and G. B. Giannakis, “From sparse signals to sparse residuals
for robust sensing,” IEEE Trans. Signal Process., vol. 59, no. 7, pp.
3355–3368, July 2011.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[22] K. Kloster and D. F. Gleich, “Heat kernel based community detection,”
in Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, New York, NY, 2014, pp. 1386–1395.

[23] I. M. Kloumann, J. Ugander, and J. Kleinberg, “Block models and
personalized pagerank,” Proc. Natl. Acad. Sci., vol. 114, no. 1, pp. 33–
38, 2017.

[24] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other
discrete input spaces,” in Proc. of Int. Conf. on Machine Learning,
Syndey, Australia, 2002, pp. 315–322.

[25] B. Kveton, M. Valko, A. Rahimi, and L. Huang, “Semi-supervised
learning with max-margin graph cuts,” in Proc. of. Int. Conf. on Artificial
Intelligence and Statistics, Sardinia, Italy, 2010, pp. 421–428.

[26] A. N. Langville and C. D. Meyer, “Deeper inside pagerank,” Internet
Math., vol. 1, no. 3, pp. 335–380, 2004.

[27] D. A. Levin and Y. Peres, Markov Chains and Mixing Times. New York,
NY, USA: Amer. Math. Soc., 2017.

[28] F. Lin and W. W. Cohen, “Semi-supervised classification of network
data using very few labels,” in Proc. of Int. Conf. on Advances in Social
Network Analysis and Mining, Odense, Denmark, 2010, pp. 192–199.

[29] W. Liu, J. Wang, and S.-F. Chang, “Robust and scalable graph-based
semisupervised learning,” Proc. of the IEEE, vol. 100, no. 9, pp. 2624–
2638, 2012.

[30] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. Cambridge, MA: Cambridge University Press, 2008.

[31] E. Merkurjev, A. L. Bertozzi, and F. Chung, “A semi-supervised heat
kernel pagerank MBO algorithm for data classification,” Univ. of
California Los Angeles, Los Angeles, US, Tech. Rep., 2016.

[32] A. N. Nikolakopoulos and J. D. Garofalakis, “Ncdawarerank: A novel
ranking method that exploits the decomposable structure of the web,”
Proc. ACM Int. Conf. on Web Search and Data Mining, Rome, Italy,
2013, pp. 143–152.

[33] A. N. Nikolakopoulos, A. Korba, and J. D. Garofalakis, “Random
surfing on multipartite graphs,” in Proc. of IEEE Int. Conf. on Big
Data, Washington DC, Dec. 2016, pp. 736–745.

[34] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” Proc. ACM SIGKDD Int. Conf. on Knowl. Disc.
and Data Mining, New York, NY, 2014, pp. 701–710.

[35] A. T. Puig, A. Wiesel, G. Fleury, and A. O. Hero, “Multidimensional
shrinkage-thresholding operator and group lasso penalties,” IEEE Signal
Process. Lett., vol. 18, no. 6, pp. 363–366, 2011.

[36] N. Rosenfeld and A. Globerson, “Semi-supervised learning with com-
petitive infection models,” arXiv preprint arXiv:1703.06426, 2017.

[37] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
April 2013.

[38] S. Segarra, A. Marques, and A. Ribeiro,“Optimal graph-filter design and
applications to distributed linear network operators,” IEEE Trans. on
Signal Process., vol. 65, no. 15, pp. 4117–4131, August 2017.

[39] P. P. Talukdar and K. Crammer, “New regularized algorithms for
transductive learning,” in Proc. of Joint Eur. Conf. on Machine Learning
and Knowledge Discovery in Databases, 2009, pp. 442–457.

[40] J. Ugander and L. Backstrom, “Balanced label propagation for partitioning
massive graphs,” in Proc. of ACM Int. Conf. on Web Search and Data
Mining, Rome, Italy, 2013, pp. 507–516.

[41] X.-M. Wu, Z. Li, A. M. So, J. Wright, and S.-F. Chang, “Learning with
partially absorbing random walks,” Proc. Adv. in Neural Inform. Proc.
Systems, Lake Tahoe, CA, Dec. 2012, pp. 3077–3085.

[42] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised
learning with graph embeddings,” arXiv preprint arXiv:1603.08861, 2016.

[43] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
Gaussian fields and harmonic functions,” in Proc. of Int. Conf. on Machine
Learning, Washington DC, Aug. 2003.

[44] D. F. Gleich, and M. W. Mahoney, “Using Local Spectral Methods to
Robustify Graph-Based Learning Algorithms,” in Proc. of the Int. Conf.
on Knowl. Disc. and Data Mining, Sidney Australia, Aug. 2015.

[45] K. He, P. Shi, J. E. Hopcroft, and D. Bindel, “Local Spectral Diffusion
for Robust Community Detection,” in Proc. of the SIGKDD workshop,
San Francisco CA, Aug. 2016.

[46] B. Jiang, K. Kloster, D. F. Gleich, and M. Gribskov, “AptRank: an
adaptive PageRank model for protein function prediction on bi-relational
graphs,” in Bioinformatics, vol. 33, no. 12, pp. 1829–1836, Aug. 2017.

[47] K. He, Y. Sun, D. Bindel, J. E. Hopcroft, and Y. Li, “Detecting
overlapping communities from local spectral subspaces,” in Proc. of the
Int. Conf. on Data Mining , Atlantic City NJ, Aug. 2015, pp. 769–774

Dimitris Berberidis (S’15) received the Diploma in
electrical and computer engineering (ECE) from the
University of Patras, Patras, Greece, in 2012 and the
M.Sc. degree in ECE from the University of Min-
nesota, Minneapolis, MN, USA, where he is currently
working towards the Ph.D. degree. His research in-
terests lie in the areas of statistical signal processing,
focusing on sketching and tracking of large-scale
processes, and in machine learning, focusing on the
development of algorithms for scalable learning over
graphs, including semi-supervised classification, and

node embedding.

Athanasios N. Nikolakopoulos (M’16) is research
associate at the Digital Technology Center, University
of Minnesota. His research interests are concentrated
in the areas of Data Mining, and Statistical Learning
with an emphasis on Information Processing over
Networks and Recommender Systems. Within these
areas, his research focuses in developing novel
algorithms for solving important emerging problems,
as well as practical software tools. He was awarded a
Ph.D. from the Department of Computer Engineering
and Informatics, University of Patras in 2016. He

also holds a Computer Engineering and Informatics Diploma and a Master
of Science in Computer Science and Technology, from the same department.
He has been member of the scientific committee of many prominent CS
conferences in the areas of Data Mining and Recommender Systems. He is a
member of ACM, IEEE and SIAM.

Georgios B. Giannakis (Fellow’97) received his
Diploma in Electrical Engr. from the Ntl. Tech. Univ.
of Athens, Greece, 1981. From 1982 to 1986 he was
with the Univ. of Southern California (USC), where
he received his MSc. in Electrical Engineering, 1983,
MSc. in Mathematics, 1986, and Ph.D. in Electrical
Engr., 1986. He was with the University of Virginia
from 1987 to 1998, and since 1999 he has been a
professor with the Univ. of Minnesota, where he holds
an Endowed Chair in Wireless Telecommunications,
a University of Minnesota McKnight Presidential

Chair in ECE, and serves as director of the Digital Technology Center.
His general interests span the areas of communications, networking and

statistical learning - subjects on which he has published more than 440 journal
papers, 740 conference papers, 25 book chapters, two edited books and two
research monographs (h-index 134). Current research focuses on learning from
Big Data, wireless cognitive radios, and network science with applications to
social, brain, and power networks with renewables. He is the (co-) inventor of
32 patents issued, and the (co-) recipient of 9 best journal paper awards from
the IEEE Signal Processing (SP) and Communications Societies, including
the G. Marconi Prize Paper Award in Wireless Communications. He also
received Technical Achievement Awards from the SP Society (2000), from
EURASIP (2005), a Young Faculty Teaching Award, the G. W. Taylor Award
for Distinguished Research from the University of Minnesota, and the IEEE
Fourier Technical Field Award (inaugural recipient in 2015). He is a Fellow
of EURASIP, and has served the IEEE in a number of posts, including that of
a Distinguished Lecturer for the IEEE-SP Society.

