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Abstract We introduce EigenRec; a versatile and efficient Latent-Factor framework for

Top-N Recommendations that includes the well-known PureSVD algorithm as a special case.

EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines

a similarity component, with a scaling operator, designed to control the influence of the prior

item popularity on the final model. Seeing PureSVD within our framework provides intuition

about its inner workings, exposes its inherent limitations, and also, paves the path towards

painlessly improving its recommendation performance. A comprehensive set of experiments

on the MovieLens and the Yahoo datasets based on widely applied performance metrics,

indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard

and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in

its most extreme manifestations – the Cold-Start problems. At the same time EigenRec has

an attractive computational profile and it can apply readily in large-scale recommendation

settings.

Keywords Collaborative Filtering · Top-N Recommendation · Latent Factor Methods ·

PureSVD · Sparsity · Distributed Computing

1 Introduction

Collaborative Filtering (CF) is commonly regarded as one of the most effective approaches to

building Recommender Systems (RS). Given a set of users, a set of items and – implicitly or

explicitly – stated opinions about how much a user likes or dislikes the items he has already

seen, CF techniques try to build “neighborhoods”, based on the similarities between users

(user-oriented CF) or items (item-oriented CF) as depicted in the data, in order to predict
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preference scores for the unknown user-item pairs, or provide a list of items that the user

might find preferable.

Despite their success in real application settings, CF methods suffer from several prob-

lems that remain to be resolved. One of the most significant such problems arises from

the insufficiency of available data and is typically referred to as the Sparsity problem [11].

Sparsity is known to impose severe limitations to the quality of recommendations [7], and to

decrease substantially the diversity and the effectiveness of CF methods – especially in rec-

ommending unpopular items (Long-Tail problem) [41]. Unfortunately, sparsity is an innate

characteristic of recommender systems since in the majority of realistic applications, users

typically interact with only a small percentage of the available items, with the problem being

intensified even more, by the fact that newcomers with no ratings at all are frequently added

to the system (Cold-Start problem [7,30]).

While traditional neighborhood-based CF techniques are very vulnerable to sparsity,

Graph-Based methods manage to cope a lot better [11]. The fundamental characteristic

that makes the methods of this family well-suited for alleviating problems related to limited

coverage and sparsity is that they allow elements of the dataset that are not directly connected

to “influence” each other by propagating information along the edges of an underlying

graph [11]. Then, the transitive relations captured in this way can be used to recommend

items either by estimating measures of proximity between the corresponding nodes [19,29]

or by computing similarity scores between them [13].

However, despite their potential in dealing with sparsity, graph-based techniques usually

exhibit poor scalability and heavy computational profile – a fact that limits their applica-

bility in large-scale recommendation settings. Latent Factor methods, on the other hand,

present a more viable alternative [11,17,23,31,36]. The fundamental premise behind us-

ing latent factor models for building recommender systems is that user’s preferences are

influenced by a set of “hidden taste factors” that are usually very specific to the domain of

recommendation [31]. These factors are generally not obvious and might not necessarily be

intuitively understandable. Latent Factor algorithms, however, can infer those factors by the

user’s feedback as depicted in the rating data. Generally speaking, the methods in this family

work by projecting the elements of the recommender database into a denser subspace that

captures their most meaningful features, giving them the power to relate previously unrelated

elements, and thus making them less susceptible to sparsity [11].

Motivation & Contributions. A very simple and widely used latent factor algorithm for

top-N recommendations is PureSVD [10]. The algorithm considers all missing values in the

ratings matrix as zeros, and produces recommendations by reconstructing it based on its

truncated singular value decomposition1. Cremonesi et al. [10], after evaluating PureSVD’s

performance against various latent factor-based algorithms and neighborhood models, found

that it was able to achieve competitive top-N recommendation performance compared to so-

phisticated matrix factorization methods [23,24] and other popular CF techniques. However,

despite showing promising qualitative results and being fairly simple to apply, PureSVD

as presented in [10] does not lend itself into fertile generalizations, nor does it leave room

for qualitative improvements. The method is typically being used almost like an enigmatic

“black box” that takes the ratings matrix as an input, and outputs its low-rank estimate –

successfully perturbing, in the process, the previously zero values of the ratings matrix into

something useful. But, is there a more fruitful way to look at PureSVD? A way that can give

more intuition about how it works and how it can be improved?

1 Note that even though the actual values of the reconstructed matrix do not have a meaning in terms of

ratings, they induce an ordering of the items which is sufficient for recommending top-N lists.
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In this work2, in an attempt to shed more light to these questions, we revisit the algo-

rithmic inner-workings of PureSVD aiming to expose the “modeling scaffoldings” behind its

mathematical structure. Interestingly, this approach provides an illustrative reformulation of

the model that paves the path towards a straightforward generalization to a whole family of

related methods – which we denote EigenRec – that can lead to qualitatively superior, and

computationally attractive top-N recommendation schemes.

– EigenRec works by building a low-dimensional subspace of a novel proximity matrix

comprising scaled inter-item similarity scores. The pure similarity component can be

defined by utilizing any reasonable measure one deems appropriate for the recommen-

dation problem under consideration (here we use three standard similarity functions

that were found to combine simplicity and effectiveness). The scaling component on

the other hand, allows for fine-tuning the influence of the prior item popularity on the

final proximity scores; a property that empowers our method to improve the produced

recommendation lists significantly.

– One of our primary concerns pertains to the computability of our method in realistic

big data scenarios. Our modeling approach implies immediate computational gains with

respect to PureSVD, since it reduces the computation of a truncated singular value de-

composition to the solution of a simpler symmetric eigenvalue problem applied to a linear

operator of significantly lower dimensions. For problems that fit in a single machine,

EigenRec can be computed readily using any off-the-shelf eigensolver. However, to en-

sure practical application of the method even for very large datasets, we propose a parallel

approach for computing EigenRec based on a computationally efficient Krylov subspace

procedure – namely the Lanczos Method. We discuss in detail its parallel implementa-

tion in distributed memory environments and we perform several tests using real-world

datasets, thus ensuring the applicability of our method in large-scale scenarios3.

– We conduct a comprehensive set of qualitative experiments on the MovieLens and Yahoo

datasets and we show that even the simple members of the EigenRec family we are

considering here, outperform several state-of-the-art methods, in widely used metrics,

achieving high-quality results even in the considerably harder task of recommending

Long-Tail items. EigenRec displays low sensitivity to the sparsity of the underlying

space and shows promising potential in alleviating a number of related problems that

occur commonly in recommender systems. This is true both in the very interesting case

where sparsity is localized in a small part of the dataset – as in the New Users problem,

and in the case where extreme levels of sparsity are found throughout the data – as in the

New Community problem.

The rest of the paper is organized as follows: In Section 2.1, we revisit PureSVD and we

“rediscover” it under different modeling lenses in order to set the intuitive grounds behind

the EigenRec approach, which is then presented formally in Section 2.2. In Section 3, we

present the EigenRec algorithm, we comment on its computational complexity and delve

into the details behind its parallelization. The qualitative evaluation of EigenRec, includ-

ing experimental methodology, metrics definition, a detailed discussion of the competing

recommendation methods, as well as top-N recommendation results in standard, long-tail

and cold-start scenarios, are presented in Section 4. Our computational tests are presented

in Section 5. Section 6 comments on related literature and, finally, Section 7 concludes this

work.

2 A preliminary version of this work has been presented in [28].

3 High-level and MPI implementations of EigenRec can be found here: https://github.com/

nikolakopoulos/EigenRec
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2 EigenRec recommendation framework

Notation. All vectors are denoted by bold lower-case letters and they are assumed to be

column vectors (e.g., v). All matrices are represented by bold upper-case letters (e.g., Q).

The j th column and the ith row of matrix Q are denoted qj and q
⊺
i
, respectively. The i j th

element of matrix Q is denoted as Qi j . We use diag(Q) to refer to the matrix that has the

same diagonal with matrix Q and zeros elsewhere, and diag(v) to denote the matrix having

vector v on its diagonal, and zeros elsewhere. Furthermore, ‖·‖ denotes a norm that – unless

stated otherwise – is assumed to be the Euclidean. We use calligraphic upper-case letters to

denote sets (e.g.,U,V). Finally, symbol , is used in definition statements.

Definitions. LetU = {u1, . . . , un} be a set of users andV = {v1, . . . , vm} be a set of items.

Let R be a set of tuples ti j = (ui, vj, ri j ), where ri j is a nonnegative number referred to as

the rating given by user ui to the item vj , and let R ∈ Rn×m be a matrix whose i j th element

contains the rating ri j if the tuple ti j belongs in R, and zero otherwise.

2.1 From PureSVD to EigenRec

A recent successful example of latent-factor-based top-N recommendation algorithm is

PureSVD [10]. This algorithm considers all missing values in the user-item ratings matrix,

R, as zeros, and produces recommendations by estimating R by the factorization

R̂ = UfΣfQ
⊺
f
, (1)

where Uf is an n × f orthonormal matrix, Qf is an m × f orthonormal matrix, and Σf is an

f × f diagonal matrix containing the f largest singular values. The rows of matrix R̂ contain

the recommendation vectors for every user in the system.

This matrix can be expressed in a different form that can provide more insight into

the way PureSVD works, making it at the same time more amenable to generalizations. In

particular, consider the full singular value decomposition of the ratings matrix R:

R = UΣQ⊺. (2)

If we multiply equation (2) from the right with the orthonormal matrix Q, we get

RQ = UΣ. (3)

Now if we use If to denote the f × f identity matrix and we multiply again from the right

with the m × m matrix
(

If 0
0 0

)
, we get

R
(
Qf 0

)
= U

(
Σf 0

0 0

)
⇒ RQf = UfΣf . (4)

Substituting equation (4) in (1) gives

R̂ = RQfQ
⊺
f
. (5)

Therefore the recommendation matrix of PureSVD can be expressed only in terms of the

ratings matrix and matrix Qf . To get an intuitive understanding of (5) – and thereby to clarify

the way PureSVD produces recommendations – it is worthwhile to give a small example.
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Suppose user ui has rated only three items, namely item v1, v3 and v5, with ratings

ri1 = 1, ri3 = 5, and ri5 = 3, respectively. Also, assume for simplicity that we only need to

decide whether we should recommend to this user, item 2 or item 4. What is PureSVD’s

solution to this dilemma? To answer this question let us follow the underlying computation

for our example user, based on (5):

.

.

.

1 0 5 0 3 0 · · · 0

.

.

.

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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φ11 φ12 φ13 φ14 . . . φ1m

φ21 φ22 φ23 φ24 . . . φ2m

φ31 φ32 φ33 φ34 . . . φ3m

φ41 φ42 φ43 φ44 . . . φ4m

φ51 φ52 φ53 φ54 . . . φ5m

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

φm1 φm2 φm3 φm4 . . . φmm

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®
¬

Φ , QfQ
⊺

f
: m ×m Matrix

It is clear that PureSVD’s scores4 for items 2 and 4 will be

πi2 = 1 × φ12 + 5 × φ32 + 3 × φ52

πi4 = 1 × φ14 + 5 × φ34 + 3 × φ54.

Notice that πi2 and πi4 are expressed only in terms of the known ratings of user ui and the

elements of an m × m symmetric matrix which we denote for simplicity Φ. The i j th element

of Φ relates items vi and vj . From a recommendation point of view, we can see that PureSVD

treats these elements as measures of “closeness” or “similarity” between the corresponding

items. For example, if φ12, φ52, φ14, φ54 in the above expression had the exact same value,

PureSVD would recommend e.g. item 2 over item 4, only if item 2 was “more related" to

item 3 than to item 4; i.e. if φ32 was larger than φ34. Therefore, informally, we can see that

PureSVD’s recommendation rule can be summed-up to the following:

Recommend to each user, the items that are more similar (in the QfQ
⊺
f

sense) to the

items she has already seen.

From the above discussion it becomes clear that PureSVD’s performance is tied to the

implicit choice of matrix Qf . However, from the definition of the singular value decomposi-

tion we know that Qf contains the orthonormal set of eigenvectors that correspond to the f

principal eigenvalues of the symmetric matrix R⊺R – and the elements of this matrix have a

4 Remember that these “scores” are by definition the elements that replace the previously zero-valued

entries of the original ratings matrix R, after its reconstruction using only the f largest singular dimensions.
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very intuitive interpretation in recommender systems parlance. In particular,

R⊺R =



users

items — r
⊺
i

—


×



items

|

users rj

|



=



items

items ·


‖ri‖‖rj‖︸    ︷︷    ︸

scaling

·cos θi j︸ ︷︷ ︸
similarity

.

Thus, the i j th element of R⊺R can be interpreted as the traditional cosine-based inter-item

similarity score, scaled up by a factor related to the popularity of the items vi, vj as expressed

in the ratings matrix. Therefore, we see that the latent factor model of PureSVD is essentially

built from the eigendecomposition of a scaled cosine-based inter-item similarity matrix.

From a purely computational perspective, this observation reduces the extraction of

PureSVD’s recommendation matrix to the calculation of the f principal eigenvectors of an

m × m symmetric matrix; a fact that can decrease markedly its overall computational and

storage needs. More importantly, from a modeling perspective, the above observation places

PureSVD in the center of a family of latent factor methods that can be readily obtained using

inter-item proximity matrices that allow for (a) different similarity functions and (b) different

scaling functions. We denote this family EigenRec, and we will show that even the simplest

of its members can lead to high-quality results in challenging recommendation scenarios

(Section 4).

2.2 EigenRec model definitions

Building on the above discussion, in this section we define formally the components of the

EigenRec framework.

Inter-Item Proximity Matrix A. The Inter-Item Proximity matrix is designed to quantify the

relations between the elements of the item space, as properly scaled pure similarity scores.

Specifically, matrix A ∈ Rm×m is a symmetric matrix, with its i j th element given by:

Ai j , ξ(i, j) · κ(i, j), (6)

where ξ(·, ·) : V ×V 7→ [0,∞) is a symmetric scaling function and κ(·, ·) : V ×V 7→ R is

a symmetric similarity function.

Scaling Component. The definition of the scaling function can be done in many different

ways, subject to various aspects of the recommendation problem at hand. In this work,

we use this function as an easy way to regulate how much the inter-item proximity scores

are affected by the prior popularity of the corresponding items. This was found to be

very important for the overall recommendation quality as we will see in the experimental

section of our paper. In particular, for the scaling function ξ(·, ·), we use the simple

symmetric function

ξ(i, j) , (‖ri‖‖rj‖)
d. (7)
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where ri denotes the ith column of matrix R. Notice that the definition of the scaling

function allows the final inter-item proximity matrix to be written in factorial form:

A = SKS (8)

where

S ≡ S(d) , diag{‖r1‖, ‖r2‖, . . . , ‖rm‖}
d (9)

and where matrix K (the i j th element of which is defined to be κ(i, j)), denotes the pure

similarity component.

Similarity Component. The definition of the similarity matrix K can be approached in

several ways, depending on the nature of the recommendation task, the size of the itemset

etc. Note that the final offline computational cost of the method may depend significantly

on the choice of matrix K – especially when this matrix needs to be explicitly computed

in advance or learned from the data. Having this in mind, in this work we propose using

three widely used and simple similarity matrices that were found to be able to attain good

results, while being easily manageable from a computational standpoint: (a) the Cosine

Similarity, (c) the Pearson-Correlation Similarity and, (c) the Jaccard Similarity.

Cosine Similarity Kcos. The similarity function κ(·, ·) is defined to be the cosine of the

angle between the vector representation of the items vi, vj ,

Ki j , cos(vi, vj ). (10)

Pearson Similarity Kpc. The similarity score between two items vi and vj is defined as

the i j th element of matrix Kpc which is given by

Ki j ,
Ci j√

CiiCj j

, (11)

with Ci j denoting the covariance between the vector representation of the items vi, vj .

Jaccard Similarity Kjac. The Jaccard similarity between two items is defined as the ratio

of the number of users that have rated both items to the number of users that have

rated at least one of them. Specifically,

Ki j ,
|Ri ∩ R j |

|Ri ∪ R j |
, (12)

where Ri the set of users that have rated item i.

Recommendation Matrix Π. The final recommendation matrix contains the recommenda-

tion vectors for each user in the system. In particular, for each user ui the corresponding

personalized recommendation vector is given by:

π
⊺
i
, r

⊺
i
VV⊺, (13)

where r
⊺
i

the ratings of user ui and V ∈ Rm× f is the matrix whose columns contain the f

principal orthonormal eigenvectors of the inter-item proximity matrix A. Observe that since

A is real and symmetric, its eigenvectors are real and can be chosen to be orthogonal to each

other and of unity norm.
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PureSVD within EigenRec. Clearly, the final recommendation matrix of PureSVD coin-

cides with that produced by EigenRec, using the similarity matrix Kcos and the standard

scaling matrix S with parameter d = 1,

PureSVD(R) ≡ EigenRec(Kcos, S(d = 1)). (14)

Furthermore, a closer look at our derivations in §2.1 reveals that EigenRec with cosine

similarity matrix and Euclidean norm scaling for a given parameter d, actually coincides

with PureSVD applied to a modified ratings matrix. In particular,

EigenRec(Kcos, S(d)) ≡ PureSVD(R̃) (15)

where

R̃ , RD, D = diag{‖r1‖, ‖r2‖, . . . , ‖rm‖}
d−1. (16)

Notice that since D is a diagonal matrix, from (16) it follows that to get the final matrix R̃

we need to multiply each column j of the original ratings matrix by ‖rj‖
d−1. Now, for values

of d less than 1 which – as we will see in the experimental section of this paper – yield the

best top-N recommendation performance, the above operation “penalizes” each item by a

factor related to a measure of its prior popularity. Seeing PureSVD within our framework

hints that its implicitly chosen value for the parameter d, makes it overly sensitive to the

prior popularity of the items and, as we will see, it is exactly this suboptimal default choice

of scaling that inevitably hinders its potential.

Having defined formally the components of our recommendation framework, we are now

ready for our “computational interlude”, where we discuss the details behind building the

latent space efficiently.

3 Building the latent space

At the computational core of EigenRec is the extraction of the principal eigenvectors of a

sparse symmetric linear operator. For modest sized problems this can be done easily in a

single machine using mature eigensolvers written in high-performance compiled languages.

Wrappers for calling these solvers are typically available in virtually every high-level pro-

gramming language. One of our main goals in this work however, is to ensure the practical

application of EigenRec even in the context of very large datasets. To this end, in this section

we provide an overview of the computational aspects of EigenRec and discuss in detail its

parallel implementation in distributed memory environments.

3.1 EigenRec computation: algorithm and parallel implementation

The specific properties of our model (symmetry and sparsity), allow us to use the symmetric

Lanczos algorithm [25] – an iterative Krylov subspace method for the solution of large and

sparse eigenvalue problems – to build the latent space, V, and produce the recommendation

lists efficiently. Given a matrix A ∈ Rm×m and an initial unit vector q, the corresponding

Krylov subspace of size ℓ is given byKℓ(A, q) , span{q,Aq,A2q, . . . ,Aℓ−1q}. By forming

an orthonormal basis for Kℓ , Krylov subspace methods can be used to solve several types

of numerical problems. In this section we describe the application of Lanczos algorithm to

build our latent factor subspace, V.
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Lanczos Algorithm. The algorithm starts by choosing a random vector q, and builds an

orthonormal basis Qj of the Krylov subspace Kj (A, q), one column at a time. In this or-

thonormal basis Qj, the operator A is represented by a real symmetric tridiagonal matrix,

Tj =



α1 β1

β1 α2

. . .

. . .
. . . βj−1

βj−1 αj


, (17)

which is also built up one row and column at a time [3], using the recurrence,

AQj = QjTj + re
⊺
j

with Q
⊺
j
r = 0. (18)

In exact arithmetic, the orthonormality of the Krylov subspace is preserved implicitly by

the three-term recurrence in (18). However, in most real-case applications of Lanczos,

orthogonality of the Krylov subspace is maintained explicitly. The leading eigenvectors of

A can be approximated by first computing (at any step j) the eigendecomposition of Tj,

Tj = ΞΘΞ⊺, (19)

and then forming the Ritz vectors Qjξi, i = 1, . . . , j. The eigenvalues of Tj (Ritz values)

approximate those of A, with the ones located at the periphery of the spectrum being ap-

proximated first. In practice, the latter implies fast convergence of Lanczos towards invariant

subspaces associated with the leading eigenvalues.

To measure the error of the approximation of each latent factor, we need to compute the

residual norm of each approximate eigenpair. It can be shown that the residual norm of the

ith approximate eigenpair at the j th Lanczos step satisfies the equation, δ
(j)

i
= |βjΞji |, i =

1, . . . , j, and thus it suffices to monitor only the subdiagonal element βj of T and the last row

of Ξ [3]. The algorithm for the computation of V and the final recommendation matrix Π for

the whole set of users is given in Algorithm 1.

Algorithm 1 EigenRec

Input: Inter-Item proximity matrix A ∈ Rm×m. Ratings Matrix R ∈ Rn×m. Latent Factors f .

Output: Matrix Π ∈ Rn×m whose rows are the recommendation vectors for every user.

1: q0 = 0, set r← q as a random vector

2: β0 ← ‖r‖2
3: for j ← 1, 2, ..., do

4: qj ← r/β j−1

5: r← Aqj

6: r← r − qj−1β j−1

7: αj ← q
⊺
j
r

8: r← r − qjαj

9: r← (I −QjQ
⊺
j
)r, ⊲ where Qj = [q1, . . . , qj]

10: β j ← ‖r‖2
11: Solve the tridiagonal problem TjΞj = ΘjΞj

12: Form the j approximate eigenvectors QjΞj of A

13: If the f top eigenvectors have converged, stop.

14: end for

15: Collect the f converged latent factors in a matrix V.

16: return Π← RVV⊺
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Computational Cost. In terms of computational complexity, the most expensive operations

of Lanczos are the MV product in Step 5, and the reorthogonalization procedure in Step 9.

The total cost introduced by the Matrix×Vector (MV) products in j Lanczos steps amounts

to O( j · nnz), with nnz denoting the number of non-zero entries. At the same time, making

the j th Lanczos vector orthogonal to the previous j − 1 ones requires O( jm) floating point

operations. The latter implies that as j increases, reorthogonalization costs will eventually

become the main bottleneck. On the other hand, the memory complexity is linear to the

number of Lanczos steps and it is essentially dominated by the need to store all vectors

produced by Lanczos.

Parallel Implementation. While Lanczos is an inherently serial procedure – in the sense

that the next iteration starts only after the previous one is completed – we can speed-up its

application by performing its computations in parallel. More specifically, let us assume a

distributed memory environment with P processors. For simplicity, we discuss the parallel

implementation for the latent space construction of an inter-item proximity matrix A that can

be written in a simple product form, A =W⊺W, as in the case e.g. of the Cosine similarity

matrix5. Since typically the ratings are concentrated in small regions of the overall rating

matrices, in order to achieve better load balancing among the processors we distribute matrix

W⊺ across all P processors based on the number of non-zero (nnz) entries; i.e. different

processors are assigned a different number of rows, so that all processors share roughly the

same number of non-zero entries.

The MV product: The MV product between A and a vector q in Step 5 of Algorithm 1, can

be achieved by a two-stage procedure where we first compute q̂ = (Wq) followed by

y = W⊺q̂. Assuming that W⊺ is distributed row-wise (thus W is distributed column-

wise), the only need for communication appears when performing q̂ = (Wq) and consists

of a simple allreduce operation to sum the local contribution of each process.

The inner products: The inner product is the second operation of Lanczos which demands

communication among the processors. It is a two-stage procedure where in the first stage

each processor computes its local part of the global inner product, while in the second

stage the local inner products (a scalar value per processor) are summed by allreduce

and the final value is distributed to all processors.

Reorthogonalization: Similarly to the above computations, the reorthogonalization step dur-

ing the j th Lanczos iteration

q′j+1 = qj+1 −QjQ
⊺
j
qj+1,

is performed by a two-stage procedure where we first compute ŷ = Q
⊺
j
qj+1 followed by

q′
j+1
= qj+1 − Qjŷ. The only need for communication among the different processors

appears when performing ŷ = Q
⊺
j
qj+1 and is of the allreduce form.

The vector updates: The vector updates are trivially parallel.

Similar approaches can be followed if matrix A is given by more general expressions.

In general, as it is the case with all Krylov subspace methods, Lanczos does not require

matrix A be explicitly formed; only a routine that is able to perform the MV products with

A is necessary. Furthermore, having the inter-item proximity matrix explicitly formed is

not advised since any explicit formation will probably be much more dense; resulting in an

unnecessary raise of the computational time spent on Lanczos compared to the same run

using the product form. For a more extensive discussion on Lanczos, its different variants,

as well as additional discussion on its parallelization strategies, we refer to [15].

5 for which, if we assume scaling parameter d, matrix W equals R diag{ ‖r1 ‖, ‖r2 ‖, . . . , ‖rm ‖ }
d−1.



EigenRec 11

4 Experimental evaluation

4.1 Datasets and metrics

The recommendation quality of our method was tested utilizing data originated from two rec-

ommendation domains, namely Movie Recommendation – where we exploit the MovieLens

datasets [18] that have been used widely for the qualitative evaluation of recommender sys-

tems; and Song Recommendation – where we used the Yahoo!R2Music dataset [40] which

represents a snapshot of the Yahoo!Music community’s preferences for different songs. More

details about the datasets used can be found in [18,40].

4.1.1 Metrics

For our qualitative experiments, except for the standard Recall and Precision metrics [10],

we also use a number of other well-known utility-based ranking indices, that assume that

the utility of a recommended item is discounted by a factor related to its position in the final

recommendation list [33]. Depending on the decay of the positional discount down the list

we have the:

Normalized Discounted Cumulative Gain, which assumes that the ranking positions are

discounted logarithmically fast [4,33] and is defined by:

NDCG@k =
DCG@k(y, π)

DCG@k(y, π⋆)
, (20)

with

DCG@k(y, π) =

k∑
q=1

2yπq − 1

log2(2 + q)
,

where y is a vector of the relevance values for a sequence of items, πq is the index of the

qth item in the recommendation list π, and π⋆ is the optimal ranking of the items with

respect to the relevant scores (see [4] for details).

RScore, which assumes that the value of recommendations declines exponentially fast to

yield the following score:

R(α) =
∑
q

max(yπq − d, 0)

2
q−1
α−1

, (21)

where α, controls the exponential decline and is referred to as the half-life parameter

(see [33] for details).

Mean Reciprocal Rank, which assumes a slower decay than R-Score but faster than NDCG.

MRR is the average of the reciprocal rank scores of the users, defined as follows:

RR =
1

minq{q : yπq > 0}
. (22)
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4.2 Top-N recommendation quality

We compare EigenRec against five methods of the graph-based top-N recommendation

family, that are considered to be effective in dealing with sparsity [11]: the Pseudo-Inverse

of the user-item graph Laplacian (L†), the Matrix Forest Algorithm (MFA), the Regularized

Commute Time (RCT), the Markov Diffusion Kernel (MD) and the Relative Entropy Diffusion

(RED). Below we give their formal definitions.

The pseudoinverse of the Laplacian. This matrix contains the inner products of the node

vectors in a Euclidean space where the nodes are exactly separated by the commute time

distance [14]. For the computation of the GL† matrix we used the formula:

GL† , (L −
1

n + m
ee⊺)−1

+

1

n + m
ee⊺, (23)

where L is the Laplacian of the graph model of the recommender system, n, the number

of users, and m, the number of items (see [13] for details).

The MFA matrix. MFA matrix contains elements that also provide similarity measures

between nodes of the graph by integrating indirect paths, based on the matrix-forest

theorem [8]. Matrix Gmfa was computed by

Gmfa , (I + L)−1 , (24)

where I, the identity matrix and L, defined above.

Markov Diffusion Kernel. As discussed in [13] the underlying hypothesis behind this ker-

nel is that similar nodes diffuse in a similar way through the graph. Concretely, if we

define a stochastic matrix P , D−1A, where A is the adjacency matrix of the graph and

D, a diagonal matrix containing the outdegrees of the graph nodes, the Markov diffusion

kernel with parameter t is defined by

Gmd , Z(t)Z⊺(t), with Z(t) ,
1

t

t∑
τ=1

Pτ . (25)

Relative Entropy Diffusion Matrix. This similarity matrix is based on the Kullback-Leibler

divergence between distributions and it is defined by

Gred , Z(t) log(Z⊺(t)) + log(Z(t))Z⊺(t), (26)

where Z(t) is defined as previous. As with the Markov diffusion kernel, t is a parameter

of the model.

Regularized Commute Time Kernel. Finally, the Regularized Commute Time is defined

by

Grct , (D − αA)−1, (27)

and its i j th element denotes the discounted cumulated probability of visiting node j when

starting from node i [13,42].

For our experiments we tested each method for many different values of their corresponding

parameters (for MD and RED: t = 1, 2, . . . , 10, 50, 100 ; for RCT: α = 10−6, 10−5, . . . , 0.99)

for every dataset and we report the best results achieved for each experiment. For further

details about the competing methods the reader can see [8,13] and the references therein.
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For our recommendation quality comparison tests we used the complete MovieLens1M

dataset (denoted ML1M) and – following the dataset preparation approach used by Karypis et

al. in [21] – a randomly selected subset of the Yahoo! Research Alliance Webscope Dataset

(denoted Yahoo) with 3312 items and 7307 users. Except for the Standard Recommendation,

we also test the performance of our method in dealing with two very challenging and realistic

scenarios that are linked to the inherent sparsity of typical recommender systems datasets.

Namely, the Long-Tail Recommendation, where we evaluate the ability of our method in

making useful recommendations of unpopular items, and the Cold-Start Recommendation,

where we evaluate how well it does in recommending items for New Users in an existing

recommender system (localized sparsity), as well as making recommendations for a New

Community of users in the starting stages of the system.

4.2.1 Standard recommendations

To evaluate the quality of EigenRec in suggesting top-N items, we have adopted the method-

ology proposed by Cremonesi et al. in [10]. In particular, we form a probe set P by randomly

sampling 1.4% of the ratings of the dataset, and we use each item vj , rated with 5-star by

user ui in P to create the test set T . For each item in T , we select randomly another 1000

unrated items of the same user, we rank the complete lists (containing 1001 items) using

each of the competing methods, and we measure the respective recommendation quality.

First we test the recommendation performance of EigenRec in the MRR metric for

scaling parameters in the range [−2, 2] using all three similarity matrices. We choose the

MRR metric for this test simply because it can summarize the recommendation performance

in a single number which allows direct comparisons between different similarity matrices

as well as different scaling parameters for each given matrix. Figure 1 reports the MRR

scores as a function of the parameter d for every case, using the number of latent factors that

produces the best possible performance for each matrix.
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Fig. 1 Recommendation performance of EigenRec on the MRR metric for scaling factors in the range [−2, 2]

We see that the best performance is achieved for small positive values of parameter

d. This was true for every similarity matrix tested, and for both datasets. Notice that this

parameter was included in our model as a means to control the sensitivity of the inter-item

proximity scores to the prior popularity of the items under consideration. Our results suggest,

that while this popularity is important (i.e. every time the best performing scaling factor was

strictly positive), its contribution to the final matrix A should be weighted carefully so as not

to overshadow the pure similarity component.
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We see that all variations of our method outperform PureSVD every time, with the

performance gap being significantly larger for the Yahoo dataset, which had a steeper per-

formance decay as the scaling factors moved towards 1 (see Figure 1). Recall that the “black

box” approach of the traditional PureSVD assumes cosine similarity (which is usually great)

with scaling parameter d equal to 1 (which is usually not). As can be seen in Figure 1,

simply controlling parameter d alone results to significant recommendation performance

gains with respect to PureSVD. We find this particularly interesting, as it uncovers a funda-

mental limitation of the traditional PureSVD approach, that can be trivially alleviated with

our approach.

We also compare EigenRec against the five graph-based methods mentioned in the

beginning of this section. For these comparisons, we used the Jaccard similarity matrix. We

tested each method for many different values of the parameters for every dataset and we

report the best results achieved for each experiment. Figure 2 reports the Recall as a function

of N (i.e. the number of items recommended) the Precision as a function of the Recall, the

Normalized Discounted Cumulative Gain as a function of N and the RScore as a function

of the halflife parameter α, for the Yahoo (first row) and the MovieLens1M (second row)

datasets. As for Recall(N) and NDCG@N, we consider values of N in the range [1, . . . , 20];

larger values can be safely ignored for a typical top-N recommendation task [10]. As we

can see, EigenRec outperforms every other method considered, for all datasets and in all

metrics, reaching for example, at N = 10 a recall around 60%. This means that 60% of the

5-starred items were presented in the top-10 out of the 1001 places in the recommendation

lists of the respective users.
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Fig. 2 Standard recommendation quality using the Recall@N, Precision, NDCG@N and RScore metrics
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4.2.2 Long-Tail recommendations

The distribution of rated items in recommender systems is long-tailed, i.e. most of the

ratings are concentrated in a few very popular items, leaving the rest of the itemspace

unevenly sparse. Of course, recommending popular items is an easy task, adding little utility

in recommender systems; on the other hand, the task of recommending long-tail items adds

novelty and serendipity to the users [10], and it is also known to increase substantially the

profits of e-commerce companies [1,41]. The innate sparsity of the problem however – which

is aggravated even more for long-tail items – presents a major challenge for the majority of

state-of-the-art collaborative filtering methods.

To evaluate EigenRec in recommending long-tail items, we adopt the methodology

described in [10]. In particular, we order the items according to their popularity which was

measured in terms of number of ratings, and we partition the test set T into two subsets,

Ttail and Thead, that involve items originated from the long-tail, and the short-head of the

distribution respectively. We discard the items in Thead and we evaluate EigenRec and the

other algorithms on the Ttail test set, using the procedure explained in §4.2.1.
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Fig. 3 Long-Tail recommendation quality using the Recall@N, Precision, NDCG@N and RScore metrics

Having evaluated the performance of EigenRec in the MRR metric for all three similarity

matrices, we obtained very good results for every case, with marginally better recommenda-

tion quality achieved for the Jaccard similarity component with 241 and 270 latent factors

and scaling factor 0.2 and 0.4 for the Yahoo and the MovieLens1M datasets respectively.

Proceeding with these parameter settings we run EigenRec against the other graph-based

algorithms and we report the results in Figure 3. It is interesting to notice that MFA and L†

do particularly well in the long-tail recommendation task, especially in the sparser Yahoo

dataset. They even manage to surpass RED, which had reached the second place when the

popular items were included (Figure 2). Once again, we see that EigenRec achieves the best

results, in all metrics and for both datasets.



16 Athanasios N. Nikolakopoulos et al.

We have seen that both in standard and long-tail recommendation scenarios, our approach

gives very good results, consistently outperforming – besides PureSVD – a number of

elaborate graph-based methods, known to work very well in uncovering nontrivial similarities

through the exploitation of transitive relations that the graph representation of the data

brings to light [11]. In our final set of experiments, presented next, we test the performance

of EigenRec in dealing with sparsity in its most extreme manifestations; the Cold-Start

Problems.

4.2.3 Cold-Start recommendations

The cold-start problem refers to the difficulty of making reliable recommendations due to

an initial lack of ratings [7]. This is a very common problem faced by real recommender

systems in their beginning stages, when the number of ratings for the collaborative filtering

algorithms to uncover similarities between items or users are insufficient (New Community

Problem). The problem can arise also when introducing new users to an existing system

(New Users Problem); typically new users start with only a few ratings, making it difficult

for the collaborative filtering algorithm to produce reliable personalized recommendations.

This can be seen as a type of localized sparsity problem and it represents one of the ongoing

challenges faced by recommender systems in operation.
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Fig. 4 New-Community recommendation quality using the MRR metric

New Community Problem: To test the performance of EigenRec in dealing with the new

community problem, we conduct the following experiment: We simulate the phenomenon

by randomly selecting to include 33%, and 66% of the Yahoo dataset on two new artificially

sparsified versions in such a way that the first dataset is a subset of the second. The idea is

that these new datasets represent snapshots of the initial stages of the recommender system,

when the community of users was new and the system was lacking ratings [26]. Then, we take

the new community datasets and we create test sets following the methodology described in

Section 4.2.1; we run all the algorithms and we evaluate their performance using the MRR,

which makes it easier to compare the top-N quality for the different stages in the system’s

evolution. We test for both standard and long-tail recommendations and we report the results

in Figure 4. We clearly see that EigenRec outperforms every other algorithm, even in the

extremely sparse initial stage where the system is lacking 2/3 of its ratings. In the figure, we
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report the qualitative results using the Cosine similarity this time, however, the performance

of the three similarity components we propose was found to be equally good.

New Users Problem: In order to evaluate the performance of our algorithm in dealing with

new users, we again use the Yahoo dataset and we run the following experiment. We randomly

select 50 users having rated 100 items or more, and we randomly delete 95% of their ratings.

The idea is that the modified data represent an “earlier version” of the dataset, when these

users were new to the system, and as such, had fewer ratings. Then, we take the subset of the

dataset corresponding to these new users and we create the test set as before, using 10% as a

cut-off for the Probe Set this time, in order to have enough 5-rated movies in the Test Set to

estimate reliably the performance quality. The results are presented in Figure 5. We see that

EigenRec manages to outperform all competing algorithms in all metrics as before.
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Fig. 5 New-Users recommendation quality using the Recall@N, Precision, NDCG@N and RScore metrics

4.2.4 Discussion

The qualitative results presented above indicate that our method is able to produce high

quality recommendations, alleviating significant problems related to sparsity. Let us mention

here that the competing algorithms are considered among the most promising methods in

the literature to address sparsity problems [11]. This was verified in our experiments as well.

Indeed, our results clearly show that the graph-based methods perform very well with their

comparative performance increasing with the sparsity of the underlying dataset, and reaching

its maximum in the cold-start scenarios. EigenRec nonetheless managed to perform even

better, in every recommendation setting considered, being at the same time by far the most

economical method from a computational point of view. Note here that all competing methods

require handling a graph of m + n nodes (where m the number of items and n the number

of users), with the extraction of the recommendation scores many times involving inversions

of (m+ n)-dimensional square matrices etc. – problems that easily become intractable as the

population of users in the system increases. EigenRec, on the contrary having a significantly

friendlier computational profile, denotes a qualitative and feasible option for realistic top-N

recommendation settings.

The choice of the scaling factor was found to be particularly significant for each and every

pure similarity component. For the cosine similarity, in particular, we observed that the best

results were always achieved for scaling parameters away from 1, making the traditional

PureSVD algorithm, “qualitatively dominated” in every case considered. Regarding the best
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choice for the pure similarity component, the differences in recommendation quality observed

in our experiments were relatively small. Therefore, our findings suggest that – at least for the

recommendation scenarios considered in this work – all three simple inter-item proximity

matrices present good candidates for high quality recommendations, with the Kcos being

slightly more convenient to handle computationally.

5 Evaluation of the computational performance in distributed memory environments

In this section we test the computational performance of our method in distributed memory

environments. The experiments were performed on the Mesabi Linux cluster at the Min-

nesota Supercomputing Institute. Mesabi is an HP Linux cluster with a total of 741 nodes

of various configurations and a total of 17,784 compute cores provided by Intel Haswell

E5-2680v3 processors. Each standard node of Mesabi features 64 GB of RAM.

We implemented EigenRec in Fortran 90. Communication among the set of available

processors was performed by means of the Message Passing Interface (MPI) standard [35],

and each MPI process was tied to a distinct compute core of Mesabi. Moreover, for each MPI

process we set the number of threads equal to one. The source codes were compiled with

the Intel MPI compiler (mpiifort) using the -O3 optimization level, and all computations

were performed in 64-bit arithmetic. The linear algebra operations were performed by the

appropriate routines in the Intel Math Kernel (Release 11.3) scientific library [5].

Table 1 reports the speedups (for up to 64 MPI processes) of the distributed memory

implementation of Lanczos over its sequential execution, as well as the total number of

iterations performed by Lanczos to compute the f = 50, 100, 150, 200, 300 leading

eigenvectors of A = W⊺W for the complete MovieLens20M and Yahoo datasets. As we

increase the number of MPI processes, the scalability of EigenRec is controlled by two key

factors: a) the intrinsic sparsity of the recommender datasets, and b) the operations performed

within the Lanczos algorithm. The sparsity of the datasets shifts the MV product to be more

memory-bound (limited by bandwidth), in the sense that the CPU is not fully exploited each

time we read data from the memory (a reality inherent to all methods based on sparse matrix

computations). Moreover, the rest of the computations performed in parallel – like the inner

products and the orthogonalization procedure – are generally dominated by latency and low

Table 1 Lanczos speedups over sequential execution for an increasing number of MPI processes (also shown

graphically in the last row). ‘Lanczos steps’: total number of iterations performed by Lanczos

MovieLens20M Yahoo

f=50 100 150 200 300 f=50 100 150 200 300

1 core 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 cores 1.76 1.97 1.72 1.90 1.65 2.00 2.32 2.35 2.40 1.93
4 cores 3.20 3.44 2.96 3.20 2.71 3.45 3.71 3.77 3.86 3.15
8 cores 5.40 5.62 4.73 5.05 4.10 4.32 4.75 5.16 5.19 4.01

16 cores 8.38 8.58 7.02 7.23 5.80 6.52 6.97 7.88 7.79 5.99
32 cores 11.57 11.50 9.46 9.40 7.27 8.78 9.30 9.79 9.57 8.94
64 cores 15.19 16.32 13.35 13.44 10.34 10.50 11.29 10.42 11.23 10.66

Lanczos steps 160 290 430 570 790 150 280 410 540 820

EigenRec
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ments reported in Table 1

granularity, which in turn also puts a limitation to the maximum scalability of the method6.

Taking into account these inherent restrictions of the underlying problem, we can see that

the scalability of the method is satisfactory.

Figure 6 plots the percentage of the total wall-clock times of the EigenRec computation

spent on MV products (denoted “MV"), and orthogonalization (denoted by “Orth"), for the

experiments reported in Table 1. As we increase the number of sought latent factors f , the

percentage of time spent on orthogonalization increases as well. Note here that the complexity

of the orthogonalization procedure is quadratic to the number of iterations in Lanczos, while

that of MV only linear. Thus, as the value of f increases, we expect orthogonalization to

account for a higher percentage of the wall-clock times, especially for datasets for which the

ratio of nnz over the number of items is small. Indeed, for the Yahoo dataset, the latter ratio

is more than 5250, and, for the values of f tested, performing the MV products requires far

more time than the orthogonalization procedure. On the other hand, for the MovieLens20M

dataset, for which this ratio is less that 750, the percentage of the amount of time spent on

orthogonalization is considerable even for f = 50, and it reaches to more than 50% when

we use 32 MPI processes to compute f = 300 latent factors. In addition to the increase

of orthogonalization costs for higher values of f , we can also notice an increase in the

percentage of time spent on orthogonalization as the number of MPI processes increases.

Different options to decrease the amount of time spent on orthogonalization is to combine

Lanczos with polynomial filtering [2] and/or thick restarting [37]. Another alternative is to

use Lanczos in combination with domain decomposition approaches [22].

Note here that in contrast with the experiments performed in §4 (where we needed

to work with a small subset of Yahoo in order to handle the computational burden of

running the competing algorithms), in this section we consider the complete Yahoo dataset,

which contains around 717 million ratings given by over 1.8 million users to more than 136

6 Note that to alleviate this, one can use sophisticated parallel schemes that try to overlap communication

with computations; however, their analysis goes deep into high-performance computing and lies outside the

scope of this paper.
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thousand songs. Even for such large-scale problem, our parallel implementation of EigenRec

exploiting no more that 64 cores, allows us to compute the recommendations very efficiently.

For example if we fix d, f to the values that give the best results in our qualitative tests,

computing recommendations for all users takes around 5 seconds for the MovieLens20M

and less than 6 minutes for the Yahoo dataset.

6 Remarks on related work

Factorization of a sparse similarity matrix was used to predict ratings of jokes in the Eigen-

Taste system [17]. The authors first calculate the Pearson’s correlation scores between the

jokes and then form a denser latent space in which they cluster the users. The predicted rating

of a user about a particular item is then calculated as the mean rating of this item, made by the

rest of the users in the same cluster. The approach followed here differs significantly. The fact

that we pursue ranking-based recommendations grants us the flexibility of not caring about

the exact recommendation scores and allows us to introduce our novel proximity matrix,

which except its pure similarity core also includes an important scaling component which

was found to greatly influence the overall quality in every recommendation scenario.

In the literature one can find many “content-aware” methods (both learning-based [12,16,

34] and graph-based [26,30]) that deal with cold-start problems exploiting meta-information

about the items and/or the users outside the ratings matrix (e.g. the genre or the director

of a movie, the composer of a piece of music etc.). EigenRec, on the contrary, is a pure

collaborative filtering method, i.e. it neither assumes nor exploits any information about the

users or the items other than the ratings matrix.

The computational core of our method is the classic Lanczos algorithm, which, together

with his modifications, has been extensively used in the context of numerical linear algebra

for the computation of the eigenvectors and/or singular triplets of large sparse matrices7.

From a qualitative perspective, Blom and Ruhe [6] suggested the use of an algorithm closely

related to Latent Semantic Indexing, which employs the Lanczos bidiagonalization technique

to generate two sets of vectors that essentially replace the left and right singular vectors,

lowering the computational cost. Chen and Saad [9] have recently examined the use of

Lanczos vectors in applications where the major task can be reduced to computing a matrix-

vector product in the principal singular directions of the data matrix; they demonstrated

the effectiveness of this approach on two different problems originated from information

retrieval and face recognition. Also, in [27] the authors examine the use of Lanczos vectors

for a very fast “crude” construction of a latent space that avoids overfitting extremely sparse

datasets.

7 Conclusions and future work

In this work, we introduced EigenRec; a versatile and computationally efficient latent factor

framework for top-N recommendations; EigenRec works by building a low-dimensional

subspace of a novel inter-item proximity matrix consisting of a similarity and a scaling

component. We showed that the well-known PureSVD algorithm can be seen within our

framework and we demonstrated experimentally that its implicit suboptimal treatment of

7 Different approaches to compute partial singular value decompositions of sparse matrices can be found

in [38,39].
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the prior popularity of the items inevitably limits the quality of the recommendation lists it

yields; a problem that can be painlessly alleviated through our approach.

An interesting direction that we are currently pursuing involves the definition of richer

inter-item proximity matrices, and the exploration of their effect in recommendation quality.

The scaling component in particular, could be exploited to account for the fact that virtually all

data for training recommender systems are subject to selection biases [20,32] (e.g. one could

define this component in a systematic way, incorporating information about the propensities

of observing the data). In this paper, we restricted ourselves in using simple components that

can be handled efficiently from a computational point of view while being able to yield good

recommendations. We performed a comprehensive set of experiments on real datasets and

we showed that EigenRec achieves very good results in widely used metrics against several

state-of-the-art graph-based collaborative filtering techniques. Our method was also found

to behave particularly well even when the sparsity of the dataset is severe – as in the New

Community and the New Users versions of the Cold-Start problem – where it outperformed

all other methods considered. Finally, our experiments suggest that EigenRec has a favorable

computational profile and presents a viable candidate for big data scenarios.
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