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Abstract—Equipping an imaginary Random Surfer of the
Web with the ability to teleport, was Page et al.’s creative
way to justify a mathematical necessity; the Teleportation
Matrix. Despite being essential for ensuring the ergodicity
of the underlying Markov chain, the standard definition of
this matrix treats the nodes of the graph in a simplistic and
“leveling” way that can prove counterintuitive – especially for
applications of the method on graphs of heterogeneous data.
In this work, we focus on such graphs and we propose a
novel alternative teleportation model that yields a well-defined
ranking vector, while being as easy to handle as the traditional
teleportation. We explore the theoretical implications of our
model, and we reveal a wealth of nice properties that result to
direct computational advantages over PageRank. We conduct
a set of experiments using real-world datasets and we verify
both the useful computational characteristics of our model and
its favorable qualitative performance. Our promising findings
suggest there remain more to be explored, and maybe much
to be gained, by revisiting the teleportation model; a neglected
part of PageRank that is typically taken for granted by the
majority of applications in the literature.

Keywords-Random Surfer Model; PageRank; k-partite
Graphs; Markov Chains; Near Decomposability

I. INTRODUCTION & MOTIVATION

PageRank’s approach to ranking is based on a very

intuitive metaphor. In their seminal paper, Page et al. [26]

imagined of a random surfer who, with probability α follows

the links of a Web page, and with probability 1 − α jumps

to a different page uniformly at random. The final ranking

score of a page is then defined to be equal to the fraction

of time this random surfer spends on it, in the long run.

Mathematically, this coincides with the limiting distribution

of a homogeneous Markov chain governed by an elegant

transition probability matrix, G, which is known as the

Google matrix and is defined by:

G , αH+ (1 − α)E (1)

Matrix H is the, usually very sparse, row-normalized adja-

cency matrix of the graph, and the teleportation matrix E

– typically defined by E , 1
n11

⊺ – is the price PageRank

pays for being able to produce a well-defined ranking.

Parameter α – commonly referred to as the damping

factor – has received much attention since it controls the

participation of the actual graph in the final Google matrix.

Choosing a small damping factor ignores the link structure

of the graph in favor of the artificial teleportation matrix,

and inevitably leads to uninformative ranking vectors. On

the other hand, setting the damping factor very close to one,

implies a prohibitively large number of iterations till con-

vergence to the PageRank vector, and also makes the com-

putation of the rankings numerically ill-conditioned [19].

Furthermore, from a qualitative point of view, several stud-

ies indicate that damping factors close to one result into

counterintuitive PageRank vectors where all the ranking gets

concentrated into mostly irrelevant nodes [5].

While there have been serious attempts to understand

and generalize the mechanism of damping (see [17] for

a discussion of the family of functional rankings [4] and

their connection to the traditional random surfing view),

little have been done towards a generalization of the te-

leportation matrix itself. Mathematically, the introduction

of some sort of teleportation is necessary to ensure that

the corresponding Markov chain becomes irreducible and

aperiodic. The very existence of the standard teleportation

matrix, however, gives incentive for direct manipulation of

the ranking score through link spamming [9], [24] and

is also known to impose limitations to the quality of the

ranking vectors (sensitivity to sparsity, biased ranking of

newly added nodes etc. [24], [30]). Moreover, from a

modeling point of view, the egalitarian treatment of the

nodes by the standard teleportation matrix can be restrictive

– and sometimes even counterintuitive – especially when

PageRank is applied to graphs of special structure, or graphs

arising from heterogeneous data. Furthermore, from a purely

computational perspective, choosing a teleportation model

that is completely “blind” to the spectral characteristics of

the underlying graph, could result in unnecessary burden for

the extraction of the ranking vector that could otherwise be

alleviated through smarter teleportation selection.

In this work, we focus on multipartite graphs, which are

known to provide good models for heterogeneous data [11],

[14], [15], [20] and we modify the traditional teleportation

model trying to fulfill three goals: (a) achieve well-defined

ranking using an intuitive teleportation scheme in terms of

random surfing behavior, (b) ensure that the model can

be handled efficiently in order to be applicable in very

large datasets, and (c) provide a model which is more “in-

tune” with known eigencharacteristics of the graph. To this

end, we propose a simple model that provides different

teleportation behavior of the random surfer depending on

the node he is currently in. In particular, the teleportation

model we propose assumes that at each step the random



surfer: with probability η follows the edges of the graph;

and with probability 1 − η teleports to a node belonging

to the same partite set with the node he currently occupies.

The interesting fact is that this simple modification, implies

a wealth of new theoretical properties, many of which result

in significant advantages over the traditional PageRank.

Summary of Contributions. After we define formally the

main components of our model, we prove that it results in

an ergodic Markov chain and therefore yields a well-defined

ranking vector. We prove that for reasonable values of the

teleportation parameter, the corresponding Markov chain is

nearly completely decomposable into aggregates that can

be made stochastic solely through the teleportation model.

This observation enables a nice time-scale analysis of the

stochastic dynamics of the random surfing process that gives

us useful information about the sought-after ranking vector

as well as insights on how to compute it. The alternative tele-

portation matrix, can be handled very efficiently since it can

be written in product-form in terms of two extremely sparse

and low-rank components. To exploit this fact we propose

computing the final vector by an iterative procedure which

needs to access our matrix only through sparse matrix-vector

(SpMV) products – and thus, allows the final stochastic

matrix not to be explicitly computed and stored. We proceed

to the rigorous analysis of our algorithm focusing on the

most commonly occurring 2-chromatic graphs, for which we

can predict analytically the existence of a special eigenvalue

controlled by the parameters of our model, as well as some

useful eigenvector properties arising from the theory of

lumpable Markov chains. Our computational experiments

indicate that the subtle computational overhead per iteration

with respect to PageRank, is more than compensated by

the drop of the number of iterations till convergence to the

final ranking vector; our method was found to consistently

outperform PageRank, in every dataset we experimented on,

with the computational time difference being particularly

emphatic, when we exploit lumpability. Finally, we test our

method’s ranking quality in the Top-N recommendation task

and we find that its performance is competitive with state-

of-the-art ranking-based collaborative filtering methods.

II. BLOCK TELEPORTATION MODEL

A. Definitions

Let G , {V1,V2, ...,VK , E} be an undirected K-partite

graph, i.e. a graph whose vertices can be partitioned into

K disjoint independent sets, V1,V2, ...,VK . In our model,

each partite set VI will be also referred to as a teleportation

block; the nodes belonging to each block, VI , are considered

sharing a certain characteristic, chosen for the particular

problem at hand (e.g. in a 3-partite graph model of a

recommender database, the nodes of V1 may represent users,

the nodes of V2 movies, the nodes of V3 genres etc.). Clearly,

every edge in E connects nodes that belong to different

teleportation blocks; furthermore, we assume that the set

of blocks cannot be split into two non-empty sets, such that

there exist no edge between them.

Normalized Adjacency Matrix H. As in the traditional

PageRank model, this matrix depicts the relations between

the nodes as they arise directly from the dataset. In particu-

lar, matrix H is defined to be the row-normalized version of

the adjacency matrix of the graph, which we denote AG
1.

Concretely, matrix H is defined as follows:

H , diag(AG1)
−1AG , (2)

where 1 denotes a properly sized column vector of ones.

Block Teleportation Matrix M. Our teleportation matrix

is created to provide different teleportation behavior of the

random surfer depending on the origin partite set of the node

he is currently in. In particular, the ith row of matrix M

which denotes the teleportation probability vector of node vi,
distributes evenly its mass between the nodes of the origin

partite set of vi. Concretely, the ij th element of matrix M,

is defined as

Mij ,

{

|Mi|
−1, if vj ∈ Mi,
0, otherwise,

(3)

where Mi denotes the origin partite set of vi. Note that

while we have assumed for simplicity uniform teleportation

within each block, in real scenarios other distributions could

be used depending on the purpose of the model.

Ranking Vector. The ranking vector produced by our model

is defined as the stationary distribution of the stochastic

matrix S that brings together the normalized adjacency

matrix H, and the block teleportation matrix M:

S , ηH+ (1 − η)M (4)

≡ ηH+ µM (5)

with η, µ > 0 and µ , 1− η.

For the rest of this work, we opted for using the greek

letter µ to denote the teleportation probability 1−η, as in (5)

in order to make the presentation more tight and clear.

B. Well-Defined Ranking

In the standard PageRank model the teleportation matrix

serves the purpose of ensuring that the final stochastic matrix

corresponds to an ergodic Markov chain. As a result, the

ranking vector produced by PageRank becomes well-defined

as it corresponds to its unique stationary distribution. In the

following theorem, we show that the same thing holds for

our block teleportation model also.

Theorem 1 The ranking vector produced by our model is a

well-defined vector that corresponds to the unique stationary

distribution of the Markov chain with transition probability

matrix S.

1For simplicity we assume that AG does not contain zero rows. In
practice isolated nodes of the original graph can be either excluded or
“patched” by the addition of artificial edges to other teleportation blocks.



Proof: From the decomposition theorem of Markov

chains we know that the state space S of every chain, can

be partitioned uniquely as S = T ∪C1∪C2∪ . . . , where T is

the set of transient states, and the Ci are irreducible closed

sets of recurrent states [13]. Thus, it suffices to show that

T = ∅ and that there exists only one irreducible closed set

of recurrent states which is also aperiodic.

Proof of Irreducibility. We choose a recurrent state, i, and

we denote the set that contains it, C. Note that since S is

finite there will always exists at least one recurrent state

(and in particular it will be positive recurrent [13]). We will

prove that starting from i, one can visit every other state of

the Markov chain – and therefore, every state in the chain,

belongs to C. Assume, for the sake of contradiction that there

exists a state j outside the set C. This, by definition, means

that there exists no path that starts in state i and ends in state

j. Here, we will show that it is always possible to construct

such a path.

Let vi be the node corresponding to state i and vj the

node corresponding to state j. Also let Hi denote the set

that contains the adjacent nodes of vi. We must have one of

the following cases:

vj ∈ Mi: States i, j belong to the same teleportation block

and thus they are directly connected through matrix M. In

particular, the conditional probability of visiting state j given

that we are in i is Pr{i → j} = Sij = µMij > 0.

vj /∈ Mi: The states belong to different teleportation blocks

and we distinguish the following cases:

1) vj ∈ Hi. Obviously the states i, j are directly con-

nected and the conditional probability of visiting j
given that we are in i is Pr{i → j} = ηHij > 0,

2) vj /∈ Hi but Mj ∩ Hi 6= ∅. Let j′ be a state in

Mj∩Hi. In this case, there exists the path i → j′ → j
with probability Pr{i → j′ → j} = ηHij′µMj′j > 0,

3) vj /∈ Hi and Mj ∩ Hi = ∅. In this case j is

neither connected to i nor it belongs to a neighboring

set of states. However, from the definitions of our

model, it holds that there exists a sequence of blocks

Mi,Mt1 ,Mt2 , . . . ,Mtm ,Mj with the property for

every pair of consecutive blocks in the sequence there

exists at least one edge between nodes that belong to

these blocks. Let the corresponding sequence of edges

be the following:

eiv1 , ev′

1
v2
, ev′

2
v3
, . . . , ev′

m
j

Without loss of generality, we assume v1 6= v
′

1, v2 6=
v

′

2, . . . , vm 6= v
′

m which presents the worst case

scenario. Notice that the existence of the above se-

quence together with the definitions of matrices H

and M imply that the corresponding consecutive states

communicate, and as a result there exists a path of

positive probability between states i and j:

i
H
−→ v1 −→

M

v
′

1
H
−→ v2 −→

M

v
′

2 · · · → v
′

m
H
−→ j

In conclusion, there will always be a positive probability

path starting from state i and ending in state j. But because

state i is recurrent and belongs to the irreducible closed set

of states C, state j belongs to the same irreducible closed set

of states too. This contradicts our assumption. Thus, there

exist no states outside the irreducible closed set C, and the

irreducibility part of our proof is complete.

Proof of Aperiodicity. It is known that the period of a state

i is defined to be the greatest common divisor of the epochs

at which a return to the state is possible [13]. When the

period of every state is one, the chain is called aperiodic.

Thus, taking into account the fact that aperiodicity is a class

property (see [13]) it suffices to take any given state and

show that it is possible to return to it in consecutive time

epochs. In our model this can be seen readily because the

diagonal elements of matrix S are – thanks to the block

teleportation matrix M – all greater than zero; thus, for any

state and for every return trajectory to that state of length

m, there exists another possible trajectory of length m+ 1,

that follows a self loop at any of the intermediate states. In

other words, every state in the Markov chain is aperiodic.

In conclusion, we have proved that the Markov chain

that corresponds to matrix S is irreducible and its states

are positive recurrent and aperiodic. This makes the chain

ergodic, and our proof is complete.

C. Decomposability

In this section we will show that for standard values of

µ the final Markov chain arising from our model is Nearly

Completely Decomposable (NCD) into aggregates that cor-

respond to the connected components of the graph. Before

we delve into the details, we discuss briefly NCD Markov

chains, following the classic presentation of Courtois [7].

1) NCD Markov Chains: Let P be the n×n irreducible

stochastic matrix, representing the transition matrix of an

ergodic Markov chain. Matrix P may be written as: P =
P⋆ + εC; where P⋆ is a block-diagonal matrix of order

n, given by P⋆ = diag(P⋆
11,P

⋆
22, . . . ,P

⋆
LL

); and matrices

P⋆
II

are irreducible stochastic matrices of order n(I). Hence,

n =
∑L

I=1 n(I) , and because both P and P⋆ are stochastic,

the row-sums of C are zero. Matrix C and the non-negative

real number ε are chosen such that for all rows it holds

ε
∑

J 6=I

∑n(J)
l=1 CmI lJ =

∑

J 6=I

∑n(J)
l=1 PmI lJ (6)

and ε = maxmI

∑

J 6=I

∑n(J)
l=1 PmI lJ , where PmI lJ , denotes

the element at the intersection of the mth row and lth

column of the PIJ submatrix of P. The parameter ε is

referred to as the maximum degree of coupling between the

subsystems P⋆
II

. When ε is sufficiently small, P is called

nearly completely decomposable.

The analysis of decomposable systems has been pioneered

by Simon and Ando who reported on state aggregation in

linear models of economic systems [27]. The theory has



been used since, in many complex problems in diverse dis-

ciplines ranging from cognitive theory and social sciences,

to stochastic modeling and performance evaluation [7], data

mining [22], [23] and information retrieval [24].

2) Decomposability of Matrix S: In our case, if we define

a decomposition of the nodes into aggregates that correspond

to the connected components of the underlying graph, it

becomes intuitively apparent that when the teleportation

parameter is small, the resulting matrix will be nearly

completely decomposable subject to the same decomposi-

tion, since the maximum degree of coupling between the

aggregates will be upper bounded by parameter µ. The

following theorem states exactly that.

Theorem 2 When the value of the teleportation parameter µ
is small enough, the Markov chain corresponding to matrix

S is NCD with respect to the partition of the nodes of the

initial graph, into different connected components.

Proof: Let us consider a general graph, in which there

are L connected components, G = {G1,G2, . . . ,GL}. Let

us assume that the rows and columns of the corresponding

matrix S, are organized such that, nodes within the same

connected component occupy consecutive rows and columns

in S. It suffices to show that the maximum degree of

coupling ε, with respect to the proposed partition, is strictly

less than µ. For simplicity we write matrix S as S = A+B,
where A contains the block diagonal elements of S (with

respect to the underlying decomposition) and B the off-

block diagonal elements. Using the above notation we see

that the maximum degree of coupling is equal to

ε = maxmI

(

∑

J 6=I

∑n(J)
l=1 SmI lJ

)

= ‖B‖∞.

Notice that in our model ε denotes the maximum probability

with which the random surfer leaves a connected component

for another. Of course this can only happen through the

teleportation matrix, which by definition is followed by

the random surfer with probability µ. Thus, the maximum

possible value for ε will always be strictly less than µ, as

needed (see Figure 1 for a small example). Therefore, for

small enough values of µ, the maximum degree of coupling

between the aggregates will be small and the corresponding

Markov chain will be nearly completely decomposable,

which completes the proof.

3) Stochasticity Adjustment of the Aggregates: In order

to get a well formulated NCD model, we must define

rigorously the exact way the strictly substochastic diagonal

block matrices of S will be made stochastic. Let us note

here that the stochasticity adjustment of the aggregates can

be approached in many ways (e.g. see §15.5 in [19]). In

our case, since the coupling between the different connected

components is based solely on the teleportation model, the

stochasticity adjustment of the diagonal blocks of S can arise

naturally and conveniently by the definition of a new block

u1

u2

u3

u4

u5

v1

v2

v3

(a)

u1

u2

u3

u4

u5

v1

v2

v3

(b)

Figure 1. Example graph with two connected components. Dashed lines
show the teleportation probabilities that connect the two aggregates. The
maximum degree of coupling equals 2

3
µ.

teleportation model from the scratch within each connected

component. Concretely, we define a matrix X, such that

S⋆ , A+X = diag{S(G1),S(G2), . . . ,S(GL)}

where S(GK) is the final stochastic matrix of our model

defined for the subgraph GK . Then, we can write

S = A+B = A+X+B−X = S⋆ + εC (7)

which gives us an expression for matrix C , 1
ε (B − X),

and concludes the definition of our NCD model.

We are now ready to show how this observation about our

model enables a very nice time-scale analysis of the random

surfing process’s transient behavior towards equilibrium.

Our analysis is based on the seminal results of Simon and

Ando [27]. For our case in particular, the analysis that

follows gives us information about the properties of the

sought-after limiting surfing distribution as well as insights

on how to compute it.

4) Stochastic Dynamics: Let us consider a matrix S

that can be brought to the form of equation (7) and the

stochastic processes π
⊺

(t) = π
⊺

(t−1)S and π
⋆⊺
(t) = π

⋆⊺
(t−1)S

⋆.
The Simon-Ando theorems [27] predict that for sufficiently

small ε the dynamic behavior of the stochastic process π
⊺

(t)
may be dissociated into four stages, that can be traced

into the eigencharacteristics of matrices St and S⋆t. The

interpretation of these stages in terms of our random surfing

process is given below:

Short-term Dynamics. The evolution of St and S⋆t with t,
for small t, is mostly governed by the smallest eigenvalues

of both matrices that are close to each other. Thus, π
⊺

(t) and

π
⋆⊺
(t) evolve similarly.

Short-term Equilibrium. The small eigenvalues of St and

S⋆t have vanished while the L predominant eigenvalues of

St remain close to unity. A similar equilibrium is being

reached within each subgraph of S and S⋆.

Long-term Dynamics. The preponderantly varying part of

St, now, involves its eigenvalues λ2, . . . , λL. The whole

graph moves towards equilibrium under the influence of

the weak interactions among subgraphs, but the relative

values in the short-term equilibria within the subgraphs are

approximately preserved.



Long-term Equilibrium. The Perron eigenvalue of St

dominates all others. A global equilibrium is attained in the

complete graph. The final ranking vector is reached.

Notice that when our model enjoys the short- and long-

term equilibrium characteristics presented above, one can

study each subgraph in isolation, knowing that the condi-

tional ranking vector he finds will reveal pairwise relations

within the subgraph that will stand over the complete graph

– even if the absolute final ranking scores are different.

As we proved in Theorem 2, the decomposability of

our model is ensured by parameter µ being sufficiently

small. But how small should it be for the above four stages

to be clearly distinguishable? As discussed by Courtois

in [7], the aggregates must be able to reach equilibrium

while the λt
2, . . . λ

t
L remain close to unity. In NCD systems

the aggregates may be adequately studied using the block

diagonal submatrices of S⋆, and since the convergence to

equilibrium of the completely decomposable subsystems is

controlled by their subdominant eigenvalues, a necessary

condition for the above analysis to hold is the modulus

of λL(S) to be larger than the modulus of the maximum

subdominant eigenvalue of the block diagonal submatrices

of S⋆. Concretely,

|λL(S)| > maxI |λ2(S
⋆
II
)|. (8)

Thankfully, for the usual values of η, µ (including the

canonical value for η = 0.85 proposed by the authors of

PageRank [26]) the above condition is typically satisfied –

as was the case for every dataset we experimented on. In

Section IV we report some relevant experimental results for

a number of publicly available datasets.

III. ALGORITHM AND COMPUTATIONAL ANALYSIS

One of the most convenient characteristics of PageRank’s

teleportation model, is that it can be managed very efficiently

from a computational point of view. Thankfully, the same

thing holds for the new teleportation model we propose. In

particular, matrix M is by definition a rank-K matrix (where

K is the number of partite sets in the graph) and as a result

it can be factorized to a product of K-dimensional matrices.

If we rearrange the rows and columns of M such that the

nodes belonging to the same part to be together, it becomes

clear that matrix M can be written as R∆R⊺ with matrices

R ∈ R
n×K and ∆ ∈ R

K×K be defined as follows:

R , diag(1|V1|, 1|V2|, . . . , 1|VK |), (9)

∆ , diag(1/|V1| 1/|V2| · · · 1/|VK |). (10)

Notice that the number of non-zero elements that we need

to store for matrix ∆ is only K , and for matrix R, only n
(all equal to 1). Therefore, given that matrix H, is typically

very sparse, the final stochastic matrix S can be expressed

as a sum of sparse and low-rank components, which makes

the use of iterative methods ideal for the extraction of the

stationary distribution. The final algorithm is as follows:

Algorithm 1 Block Teleportation Rank

Input: H,M ∈ Rn×n, scalars η, µ > 0 such that η + µ = 1, and
convergence tolerance ǫ.

Output: π⊺

1: Let the initial approximation be π
⊺

(0)
. Set k = 0.

2: Compute

π
⊺

(k+1)
← π

⊺

(k)
H

φ⊺ ← π
⊺

(k)
M

π
⊺

(k+1)
← ηπ

⊺

(k+1)
+ µφ⊺

3: Normalize π
⊺

(k+1)
and compute r = ‖π⊺

(k+1)
− π

⊺

(k)
‖1.

4: If r < ǫ, quit with π
⊺

(k+1)
, otherwise k ← k + 1 and go to step 2.

The extreme sparsity of the factors of M, together with

the fact that in our algorithm this matrix is accessed only

through matrix-vector products, imply that the number of

floating point operations per iteration will be dominated by

the SpMV product with the normalized adjacency matrix H.

Thus, the number of operations per iteration arising from

our algorithm is asymptotically the same with the corre-

sponding number of operations involved in the application

of the power method for the computation of the traditional

PageRank. The number of iterations till convergence, on the

other hand, is controlled by the spectral characteristics of the

particular stochastic matrix. Concretely, each iteration of the

algorithm effectively updates the estimation of the ranking

vector as follows:

π
⊺

(k+1) ← π
⊺

(k)S,

where π
⊺

(0) an arbitrary initial stochastic vector. The final

ranking vector is defined as the limiting distribution that

arises if we let our random surfer jump from node to node

following the transition probabilities of matrix S, forever.

That is, π
⊺ = limk→∞ π

⊺

(k). It can be proved that the

rate at which π
⊺

(k) → π
⊺ depends on the modulus of the

subdominant eigenvalue of matrix S [28]. In particular, the

asymptotic rate of convergence to the limiting distribution,

is the rate at which |λ2(S)|k → 0. Therefore, the number

of floating point operations needed to satisfy a tolerance

criterion ǫ, may be obtained approximately from

Ω =
Θ(nnz(H)) log ǫ

log|λ2(S)|
. (11)

Thus, the time complexity of our method is controlled by

the spectral characteristics of matrix S. But what can we say

about the spectrum of matrix S?

From Theorem 1 we know that |λ2(S)| < 1, for every

η, µ > 0 such that η + µ = 1, holds. In the general

case this is the furthest we can go without delving into

specific details of the particular graph under consideration,

which are generally not known in advance. Thankfully,

for the significant and widely occurring class of K-partite

graphs with chromatic number, χ(G) = 2, we can dig a

little deeper. After reviewing relevant literature [11], [14],



[15], [20] and having experimented with a large number

of realistic datasets publicly available on the Web [18], we

find that in the vast majority of realistic modeling scenarios

the corresponding multipartite graphs fall into this category,

which includes the widely common bipartite graphs as well

as multipartite graphs that have a tree-like block structure.

A. Convergence Analysis

In this section, we explore the spectral characteristics

of the class of matrices S that correspond to 2-chromatic

graphs. Although, Algorithm 1 will converge for any block

teleportation model yielding a well-defined ranking vector,

in our subsequent analysis we assume that the graphs

under consideration are connected. Let us note that this

assumption does not harm the generality of our results, since,

in case there exist more than one connected components,

the implied decomposability of the model gives us the

theoretical grounds for computing the ranking vectors for

each connected component separately – and in parallel –

using Algorithm 1. Then, if need be, we can combine the

independent solutions using the steady state probabilities

of the coupling matrix [7], [28] that accounts for the way

these aggregates interact with each other. Let us also note

that since we are interested in the relevant scores of the

correspondent nodes in the final ranking vector, it is not

necessary to resort to iterative aggregation/disaggregation

methods [28]; a single aggregation step is enough.

The following theorem sheds a little more light to the

spectral characteristics of matrix S arising from graphs

fulfilling the above assumptions. In particular, we predict

analytically the existence of an eigenvalue, which for re-

alistic values of parameters η, µ, is likely to denote the

subdominant eigenvalue of the final stochastic matrix.

Theorem 3 Assuming G is a connected graph for which

χ(G) = 2 holds, the spectrum of the stochastic matrix S is

such that −η + µ ∈ λ(S).

Proof: When G is connected, matrix H is irre-

ducible [19]. Furthermore, since the graph is 2-chromatic,

it can be reduced graph-theoretically to a bipartite form [6],

with the different teleportation blocks split into two partite

sets of possibly heterogeneous nodes. The rows and columns

of matrices H and M are considered arranged accordingly.

Notice that a random walk on this graph results in a

periodic Markov chain with period d = 2. Therefore, from

the Perron-Frobenius theorem [13] we know that

λ1(H) = 1, and λ2(H) = e2iπ/d = eiπ = −1.

The Perron eigenvalue, λ1, is associated with the right eigen-

vector 1 whereas the eigenvalue λ2, with a right eigenvector

which we denote v. Turning our attention to the eigenvector

v we get the following useful lemma.

Lemma 1 Vector v

v , [

#nodes of 1st partite set
︷ ︸︸ ︷

1 1 1 · · · 1

#nodes of 2nd partite set
︷ ︸︸ ︷

−1 − 1 · · · − 1]

is an eigenvector of both row-stochastic matrices H and

M. In particular, (−1,v) is an eigenpair of matrix H, and

(1,v) is an eigenpair of matrix M.

Proof: Let n′ be the number of nodes and K ′ the

number of blocks in the first partite set. The proof can be

done by straightforward calculations. In particular,

Hv =

(

0 H12

H21 0

)(

1n′

−1n−n′

)

=

(

−1n′

1n−n′

)

= −v

Similarly, for matrix M we get

Mv =























M111n1
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.
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1n1
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1n
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−1n
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= v

and the proof is complete

Now let us define a nonsingular matrix, Q ,
(

1 v X
)

, which contains in its first two columns the

eigenvectors that correspond to the principal and the sub-

dominant eigenvalues of matrix H. Also let

Q−1 ,





y1
⊺

y2
⊺

Y⊺



 (12)

We then have Q−1Q = I, which can be usefully expressed




y1
⊺1 y1

⊺v y1
⊺X

y2
⊺1 y2

⊺v y2
⊺X

Y⊺1 Y⊺v Y⊺X



 =





1 0 0

0 1 0

0 0 I



 (13)

Now, if we consider the similarity transformation of our

stochastic matrix, Q−1SQ, and taking into consideration

Lemma 1 and the identities (13), we have

Q−1SQ = Q−1 (ηH + µM)Q = · · · =

=





1 0 ηy1
⊺HX + µy1

⊺MX
0 −η + µ ηy2

⊺HX + µy2
⊺MX

0 0 ηY⊺HX + µY⊺MX



 (14)

From which we directly get that, −η + µ is an eigenvalue

of matrix S, and our proof is complete.

Notice that for usual values of the parameters η ∈
[0.8, 0.95] and µ ∈ [0.05, 0.2], the modulus of the eigenvalue

predicted by Theorem 3, is big enough to very likely be

the subdominant eigenvalue of matrix S, i.e. the eigenvalue

that controls the number of iterations till convergence to

the stationary distribution. Indeed, as can be seen from our

proof, the only realistic way for −η+µ to not represent the

subdominant eigenvalue of S is if λ3(H) is very close to

unity. Notice that this denotes the mathematical “fingerprint”

of an underlying NCD stochastic system, and can be dealt

with, by further decomposition of the problematic graph.



Fortunately, this was not the case for any of the connected

graphs we experimented on, where we find that the spectrum

of matrix H is such that −η + µ is the subdominant

eigenvalue of S.

Suppose we have a graph with more than one connected

components. Notice that when the eigenvalue predicted by

Theorem 3 denotes the subdominant eigenvalue of every

connected aggregate, and assuming µ < 1/2 holds, con-

dition (8) is always fulfilled. This fact, arises directly from

the observation that for ε < 1/2, |λL(S)| will be bigger

than 1−2ε (see Courtois [7]). Thus, if we take into account

that in our case ε will always be strictly less than µ (see the

proof of Theorem 2), we get |λL| ≥ 1−2ε > 1−2µ = η−µ.

B. Choosing the Starting Vector

Regardless of the choice of the initial stochastic vec-

tor, Theorem 1 certifies that Algorithm 1 will eventually

converge to π
⊺. In this section, we will see that utilizing

carefully the symmetries of the Markov chain that arise

from our novel teleportation model, can result to even faster

convergence. The key observation is that under the assump-

tions discussed above, our chain also enjoys the property of

lumpability; and this, if exploited carefully, allows us to take

a glimpse of the properties of the sought-after vector π⊺.

In particular, let us note that since the graph is 2-

chromatic, it can be reduced graph-theoretically to a bipartite

form [6], with the nodes split into two partite sets containing

elements originated from possibly different teleportation

blocks (see Figure 2 for a small example). This defines a

partition of the nodes, which corresponds to a partition of

the states of our Markov chain denoted A , {A1,A2}.

Theorem 4 The final Markov chain of our model that cor-

responds to a 2-chromatic graph, is lumpable with respect

to the partition A defined above.

Proof: It suffices to show that the probability of moving

from a state i ∈ A1 to the set A2, i.e. Pr{i → A2} =
∑

j∈A2
Sij , has the same value for every i ∈ A1, and that

the probability of moving from a state i ∈ A2 to the set

A1, i.e. Pr{i → A1} =
∑

j∈A1
Sij , has the same value for

every i ∈ A2 (see Kemeny and Snell [16] for a proof). Let

us consider the first part:

Pr{i → A2} = η
∑

j∈A2
Hij + µ

∑

j∈A2
Mij (15)

The second term of the RHS is equal to 0, since by the

definition of our teleportation model the random surfer can

only teleport to nodes belonging to the same block. The

first term, on the other hand, equals η, as a result of the

stochasticity of H and the fact that the outgoing edges of

our graph connect only vertices belonging to different partite

sets. Thus, Pr{i → A2} =
∑

j∈A2
Sij = η for all i ∈ A1.

Following exactly the same path one can show that Pr{i →
A1}, equals to η, also. Thus, the criterion of lumpability is

verified, and the proof is complete.

u1

u2

u3

v1

v2

v3

w1

w2

(a)

u1

u2

u3

v1

v2

v3w1

w2

(b)

Figure 2. Example graph with 3 teleportation blocks. The final Markov
chain defined over this graph is lumpable into 2 lumps highlighted in the
second graph.

Besides being interesting from a purely theoretical point

of view, the lumpability of our model carries the potential

of letting us have a first look to the properties of our final

ranking vector.

Theorem 5 When the final Markov chain is lumpable with

respect to partition A, the left Perron-Frobenius eigenvector

of the corresponding stochastic matrix S has the property,

the sum of the elements that correspond to nodes in the first

lump of states to be equal to the sum of the elements that

correspond to nodes in the second lump of states.

Proof: For simplicity and without loss of generality, we

assume that the rows and columns of the stochastic matrix

S are arranged such that all the nodes in the first lump

correspond to the first |A1| rows and columns of S.

Let π⊺ be the unique left eigenvector that corresponds to

the Perron eigenvalue of S. By definition it holds π⊺S = π
⊺.

Now, taking into account the arrangement of matrix S, if we

multiply from the right with matrix
(

1A1
0

0 1A2

)

we get

π⊺S

(

1A1
0

0 1A2

)

= π⊺

(

1A1
0

0 1A2

)

π⊺

(

µM111A1
ηH121A2

ηH211A1
µM221A2

)

=
(

π
⊺

11A1
π

⊺

21A2

)

(

π
⊺

1 π
⊺

2

)

(

µ1A1
η1A1

η1A2
µ1A2

)

=
(

π
⊺

11A1
π

⊺

21A2

)

Then solving the last system taking into consideration that

π
⊺ denotes a probability vector and that η + µ = 1, we get

π
⊺

11A1
= π

⊺

21A2
(16)

and our proof is complete.

Translating this result to our random surfer model, implies

that in the long run the percentage of time the random surfer

spends being in the nodes of lump A1 equals the percentage

of time he spends being in the nodes of lump A2. Notice

that one could readily utilize Theorem 5, by choosing an

initial vector for Algorithm 1, that satisfies Equation (16),

in the hope of decreasing the expected number of iteration

till convergence. A simple selection, that makes no other

assumptions about the graph is

π
⊺

(0) =
(

1
2|A1|

1
⊺

A1

1
2|A2|

1
⊺

A2

)

(17)
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Figure 3. Execution times and number of iterations till convergence for different values of parameter η.

In our computational tests, presented in the following sec-

tion, we will see that the resulting benefit from following

this approach is, in fact, very significant.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation of our method was done

using a number of publicly available datasets, originated

from many different application areas. Every dataset used

throughout this paper can be downloaded from [1] (Movie-

Lens), from [2] (Yahoo!Music) and from the collection [18]

(the rest).

A. Experimental Verification of NCD

In order to confirm the properties predicted by the near

complete decomposability of our model, we perform the

following experiment. We take six disconnected bipartite

graphs and we run our algorithm on the complete graph

as well as the three largest aggregates (which account for

the vast majority of the nodes in each dataset), using the

canonical value for η = 0.85. Then, we take each of the

ranking vectors and we calculate its correlation with the

corresponding subvectors arising from the complete graph.

The metrics used for this comparison are the Kendall’s τ and

Spearman’s ρ correlation coefficients. Their value is 1 for

perfect match and -1 for reversed ordering. Table I reports

the results.

Table I
RANKING CORRELATION TESTS.

τ ρ

Dataset Name 1st 2nd 3rd 1st 2nd 3rd

Amazon(Rat) 0.99 1 1 1 1 1
DBLP 0.99 1 1 1 1 1

Stack Overflow 0.98 1 1 1 1 1
BookCrossing(Rat) 0.98 1 1 1 1 1

Wikinews(en) 0.99 1 1 1 1 1
Youtube 0.99 1 1 1 1 1

We see that the rankings produced for each aggregate in

isolation, imply (near) identical orderings with those arising

from the complete graph. The results are in accordance

with our theoretical analysis presented in Section II-C, and

validate the dissociation of the random surfing process’s

dynamics into the four stages we predicted. Notice here, that

the solution of the subgraphs in isolation (i.e. the solution of

the diagonal blocks of S⋆) captures the short-term equilibria

of the complete random surfing process which, as can be

seen by our results, are indeed preserved as the complete

system moves towards its steady state.

B. Computational Experiments

As we discussed in Section III, when we have discon-

nected graphs, Algorithm 1 can be applied for each aggre-

gate in isolation. Then, the independent solutions can come

together based on the interactions between the subgraphs.

Of course, this reduces the dimensionality of the problem

and lowers the computational burden for computing the

final ranking vector; especially if we take into account

the fact that the calculation of the rankings of the aggre-

gates can be done in parallel. Here, in order to test the

computational implications arising solely from the use of

our novel teleportation model, we run our model against

the standard PageRank with uniform teleportation on six

datasets modeled by connected multipartite graphs. For fair

comparisons we followed the exact same implementation

approach for both methods based on the standard power

method, which is commonly used for the computation of

PageRank2. We consider two versions of our method, de-

2In the literature there have been proposed more elaborate numerical
algorithms for the extraction of the stationary distribution of the final
Markov chain [28], or for the computation of PageRank in particular (see for
example [19] or more recently [21]). Of course almost every such method
can be straightforwardly applied to the computation of our ranking vector
as well. However, since our goals in this work were mainly theoretical,
we opted for using the most standard computational approach for both
methods in order to highlight the intrinsic advantage arising from the
spectral characteristics of our alternative teleportation component.



noted BT-Rank and BT-Rank(NoLump). The first version

exploits the lumpability of the Markov chain using the

starting vector (17), whereas the second one is using the

standard uniform starting vector. Figure 3 shows the time

needed for the computation of the ranking vectors in each

case and also the number of iterations (the labels over

the bars) needed by the algorithms to converge – up to a

difference in the L1-norm lower than 10−6 – for values of

parameter η in the range [0.80, 0.95].
The difference in the number of iterations is very large.

Notice that even without exploiting lumpability, our method

always converges in less than half iterations than PageRank.

And this was true for every dataset and for every value of

η tested. The exploitation of lumpability, however, makes

the difference in convergence speed even larger (with our

method exhibiting, at the same time, very modest increase

of iteration steps with η). As expected, this difference in

iterations is directly reflected to the actual wall-clock timing

difference of the methods, since the factorization of our

teleportation model (see Section III), makes the SpMV

product with M in each iteration cost significantly less than

the SpMV product with H, thereby allowing the positive

spectral effect of our method to show.

C. Qualitative Evaluation

While our goals in this work were primarily theoretical,

for completeness we also perform an experiment in order to

assess the quality of our method in producing personalized

ranking vectors. For our tests we used the MovieLens1M

dataset which we modeled as a 3-partite graph (users-

movies-genres). Similar to PageRank, personalization can be

achieved through our block teleportation model, exploiting

available information about the users. In our case, since we

only have their ratings, we use the following very simple

definition for matrix M:

M , diag (1e⊺

i
,1ω

⊺

i
,1̟

⊺

i )

where ωi is the normalized vector of the users’ ratings over

the set of movies, and ̟i, the normalized vector of his

mean ratings per genre. The solution of the corresponding

BT-Rank model gives us a personalized ranking with respect

to user ui. In terms of random surfing our model translates

to the following: when the surfer teleports from a node of

the user-set he goes to the node corresponding to user ui;

when he teleports from a node of the movie-set he goes

to some movie according to distribution ωi; and when he

teleports from a node of the genre-set he goes to some

genre according to distribution ̟i. Note that when one has

more information about the user (e.g if we know that the

user trusts the opinion of a given set of users, or that he

has expressed preferences about particular genres etc.), our

model has the flexibility to incorporate it to the teleportation

model through careful definition of the corresponding block

teleportation vectors.
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Figure 4. Top-N Quality using the Recall@N and NDCG@N metrics.
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Figure 5. Top-N Quality using the MRR metric.

In order to evaluate the quality of our method in sug-

gesting Top-N lists of movies, we adopt the methodology

proposed in [8]. In particular, we randomly sample 1.4%

of the ratings of the dataset in order to create a probe set

P , and we use each movie vj , rated with 5-star by user

ui in P to form the test set T . Finally, for each movie

in T , we randomly select another 1000 unrated movies of

the same user and we order the 1001 movie-lists according

to the rankings produced by BT-Rank as well as five

other state-of-the-art graph-based methods; namely, the node

similarity based methods L†, and Katz; the random walk

approaches First Passage Time (FP) and Commute Time

(CT); and the Matrix Forest Algorithm (MFA) (for details

about the competing methods see [10] and the references

therein). For the evaluation of the recommendation quality,

we use the standard Recall@N and Normalized Discounted

Cumulative Gain (NDCG@N) metrics focusing on the range

N = [1, . . . , 20]; and the Mean Reciprocal Rank (MRR)

metric (due to space constrains for the definitions of these

metrics we refer the reader to [23]). We report our results in

Figures 4 and 5. As we can see our method achieves good

results in every metric, managing to outperform all the other

graph-based methods considered.

V. CONCLUSIONS AND FUTURE WORK

The vast majority of applications of PageRank in the

literature adopt the traditional rank-one teleportation matrix



that is defined using, either the standard uniform vector pro-

posed by Page et al. [26] or, in some cases, an application-

specific teleportation vector [3], [29]. Recently, Gleich and

Rossi [12] proposed a dynamical system reformulation of

PageRank that incorporates a time-evolving teleportation

vector. Nikolakopoulos and Garofalakis [24] proposed a

generalization of PageRank that includes a more complex

low-rank teleportation model designed to highlight the de-

composable structure of the Web Graph, and they studied

the conditions under which it obviates the need for uniform

teleportation [25]. In this work, we revisit the traditional

PageRank model and we modify it for random surfing

on multipartite graphs. The simple alternative teleportation

model we propose accounts for the heterogeneity of the

nodes and results in an ergodic Markov chain yielding a

well-defined ranking vector. Our novel teleportation matrix

is low-rank and can be written as a product of extremely

sparse matrices that can be handled very efficiently, mak-

ing our method readily applicable to very large graphs.

We explore analytically our model’s implications and we

uncover several nice theoretical properties, that affect the

final stochastic matrix in a computationally redeemable

way. This was verified by our experiments in several real-

world datasets, where we found that our method consistently

outperforms PageRank.

A very interesting path that remains to be explored

involves the definition of a systematic framework for the

creation of teleportation models that are more in-sync with

the spectral properties of the underlying graphs. Notice, that

the traditional rank-one teleportation matrices can not do

the trick; however, allowing the teleportation model to be

low-rank instead, gives the necessary room for combining

easy handling, richer modeling, as well as computational

efficiency. In this work we followed this path, focusing on

the commonly occurring class of multipartite graphs. Our

approach was primarily theoretical. However, we feel that

both our analysis, and our promising experimental results

suggest there remain more to be discovered, by revisiting

and gaining a deeper understanding of the – many times

overlooked – teleportation model.
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