NCDawareRank

A Novel Ranking Method that Exploits the Decomposable Structure of the Web

Athanasios N. Nikolakopoulos John D. Garofalakis

Computer Engineering and Informatics Department, University of Patras Computer Technology Institute and Press "*Diophantus*"

PageRank Model:

$$\mathbf{G} = \alpha \mathbf{H} + (1 - \alpha) \mathbf{E}$$

The Damping Factor Issue:

 Controls the fraction of importance, propagated through the links.

• The choice of α has received much attention

- ► Picking very small α ⇒ Uninformative Ranking Vector
- ▶ Picking a close to 1 ⇒ Computational Problems, Counterintuitive Ranking

We focus on the **Teleportation model** itself!

Web as a Nearly Completely Decomposable System:

- Nested Block Structure
 - ► Hierarchical Nature ⇒ NCD Architecture
- NCD has been exploited Computationally.
- We aim to exploit it Qualitatively in order to Generalize the Teleportation Model
 - Multiple Levels of Proximity between Nodes
 - Core Idea: Direct importance propagation to the NCD blocks that contain the outgoing links.

$$\mathbf{P} = \eta \mathbf{H} + \mu \mathbf{M} + (1 - \eta - \mu) \mathbf{E}$$
$$\mathbf{H} = [H_{uv}] \triangleq \frac{1}{d_u}, \quad \text{if } v \in \mathcal{G}_u$$
$$\mathbf{M} = [M_{uv}] \triangleq \frac{1}{N_u | \mathcal{A}_{(v)} |}, \quad \text{if } v \in \mathcal{X}_u$$
where $\mathcal{X}_u \triangleq \bigcup_{w \in (u \cup \mathcal{G}_u)} \mathcal{A}_{(w)}$ Proximal Set of Pages
$$\mathbf{E} = \mathbf{ev}^{\mathsf{T}}$$

- We partition the Web into NCD blocks, {A₁, A₂,...,A_N},
- For every page u we define X_u to be its proximal set of pages, i.e the union of the NCD blocks that contain u and the pages it links to.
- We introduce an Inter-Level Proximity Matrix M, designed to propagate a fraction of importance to the proximal set of each page. Matrix M can be expressed as a product of 2 extremely sparse matrices, R∈ℜ^{n×N} and A∈ℜ^{N×n},
 - $n_z(\mathbf{R}) + n_z(\mathbf{A}) \ll n_z(\mathbf{H}) \ll n_z(\mathbf{M})$

efficient storage

$$\square \Omega \mathbf{R} \times \mathbf{A} \ll \Omega \mathbf{H} \ll \Omega \mathbf{M}$$

computability

Theorem (Convergence Rate Bound:)

The subdominant eigenvalue of matrix **P** involved in the NCDawareRank, is upper bounded by $\eta + \mu$.

Computational Experiments:

	PageRank	NCDawareRank							
	$\alpha = 0.85$	$\mu = 0.005$	0.01	0.02	0.05	0.1	0.2	0.3	
cnr-2000	48	47	45	43	41	40	40	41	
eu-2005	42	42	41	40	39	38	40	41	
india-2004	48	47	46	45	42	42	42	42	
indochina-2004	47	46	45	44	42	42	42	42	
uk-2002	46	45	44	43	42	41	41	41	

Experimental Evaluation

Newly Added Pages Bias Problem:

- Methodology:
 - Extract the 90% of the incoming links of a set of randomly chosen pages.
 - Compare the orderings against those induced by the complete graph.

# New Pages	8000	10000	12000	15000	20000	30000
HyperRank	94.51±0.22	93.26±0.19	92.96±0.21	90.37±0.30	87.72±0.28	82.34±0.30
LinearRank	93.80±0.48	92.60±0.24	91.23±0.28	89.41±0.47	86.56±0.44	80.69±0.49
NCDawareRank	96.81±1.06	96.48±1.10	96.64±0.42	95.44±1.39	94.77±0.72	91.49±1.42
PageRank	93.68±0.59	92.46±0.30	91.04±0.37	89.19±0.55	86.33±0.53	80.26±0.57
RAPr	94.16±0.37	92.96±0.20	91.64±0.23	89.87±0.49	87.15±0.41	81.47±0.41
TotalRank	$94.15{\scriptstyle\pm}0.38$	$92.94{\scriptstyle\pm}0.21$	$91.62{\pm}0.25$	$89.84{\pm}0.51$	$87.12{\pm}0.43$	$81.37{\pm}0.44$

Sparsity:

- Methodology:
 - Randomly select to include 90% 40% of the links on a new "sparsified" version of the graph
 - Compare the rankings of the algorithms against their corresponding original rankings.

Resistance to Direct Manipulation:

- Methodology:
 - Randomly pick a node with small initial ranking and we add a number of n nodes that funnel all their rank towards it.
 - We run all the algorithms for different values of n and we compare the spamming node's rank.

We propose NCDawareRank:

- Generalizes PageRank by Enriching the Teleportation Model
- Produces More Stable Ranking Vectors
 - Sparseness Insensitivity
 - Resistance to Manipulation
- Opens new interesting research directions

Thanks! Q&A

